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«Непостижимая эффективность
математики в естественных науках»

Е. В и г п е р
*

«... уже наступила эра вычислительной

химии, когда сотни (если не тысячи) химиков

для изучения все новых и новых проблем будут
переходить от лабораторных работ к

вычислительным машинам»

Р. М ал лип е к
**

ВВЕДЕНИЕ

Быстрое развитие в середине XX в. вычислительной

математики, математической статистики, теории информации и

вычислительной техники (различные виды вычислительных машин и в

первую очередь электронные вычислительные машины) дало
возможность решать непрерывно расширяющийся круг задач, ранее

недоступный для количественного исследования, извлечь больший,
чем прежде, объем информации из экспериментальных данных
и по-новому поставить проблему планирования эксперимента.

Предлагаемая вниманию читателя книга посвящена

изложению результатов исследований, позволяющих расширить круг
задач, решаемых при помощи электронных вычислительных машин

путем использования новых методов обработки информации,
математического эксперимента и управления сложными системами.

Процессы физической и химической кинетики по своему

существу являются статистическими и представляют собой объекты

изучения неравновесной статистической механики. Уравнения
этих процессов в подавляющем большинстве случаев нелинейны,

уже это предопределяет роль электронных вычислительных

машин в решении кинетических задач. Сложность
экспериментального исследования кинетических задач, в описании которых
неразделимо сочетаются макроскопические и микроскопические
параметры, делает особенно важным использование всех

возможностей, заключенных в математическом эксперименте.

Согласно кинетическим уравнениям, система за достаточно

длительное время придет к равновесию, полностью отвечающему

равновесной статистической механике. Решение этих уравнений

* Название статьи Е. Вигнера. УФН, 94, вып. 3, 535 (1968).
** Р, Малликен. Нобелевская лекция по химии, 1966 г., УФН, 94, вып. 4,

606 (1968).
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поэтому должно иметь локальную на каждом разумном интервале
времени (разумном как для понимания соответствующих
процессов, так и для управления ими) прогнозирующую силу, которая
в значительной степени зависит от эффективного применения
методов моделирования и математического эксперимента на

электронных вычислительных машинах. Эти методы позволяют выявить

максимальное количество заключенной в экспериментальных
данных информации, которая может быть не раскрыта «домашинными»

методами, а само решение позволяет наметить пути обобщения
отдельных результатов в закономерности той или иной степени

общности.
Такой путь исследования кинетических процессов

предполагает, естественно, как одну из начальных стадий формализацию
и отбор необходимых и достаточных для описания поведения

систем понятий (величин). Многие понятия могут быть при этом

ограничены в своем значении (например «передача энергии в

радиационных гетерофазных процессах»), другие отброшены как

несодержательные (например «электроотрицательность») или не-

допускающие, по-видимому, математическую формализацию
(например «реакционная способность»).

Главной целью математизации химической кинетики должно

быть повышение эффективности решения ее задач и нахождения

механизмов реакций. При этом строгая постановка задач

химической кинетики отнюдь не подразумевает учет всех факторов,
определяющих тот или иной процесс. Речь идет лишь о выработке
критериев достаточно строгого разделения факторов на существенные
и несущественные. Пусть, например, для решения задачи

используется комплекс данных, который позволяет решить ее

некоторым алгоритмом с эффективностью Р (т. е. доля правильных

заключений составляет Р). Добавим в этот комплекс еще один

параметр и решим снова поставленную задачу, используя тот же

алгоритм. Если окажется, что эффективность решения задачи не

изменилась, то это означает, что введенный дополнительный
параметр не Заключает никакой новой информации по сравнению с той,
которая заключалась в имевшемся комплексе без этого параметра.

Если же эффективность решения задачи увеличилась, то

указанный параметр содержит новую информацию. Очевидно,
например, что эффективность описания химически реагирующей
системы отнюдь не обязательно повысится от включения в ее механизм

максимального числа реакций, допускаемых валентными

соотношениями.

Вопросы, рассматриваемые в настоящей книге, представляют
собой различные подходы к математическому моделированию
явлений химической и физической кинетики. Очевидно, что если

модель, основанная на той или иной гипотезе о внутренней
структуре явления (например о механизме химической реакции), не

описывает всей совокупности известных особенностей рассматри-



ваемого явления (или процесса), то она непригодна.
Математическое моделирование дает четкий и надежный критерий для
дискриминации гипотез, неадекватных действительной внутренней
структуре явлений. В случае же удовлетворительного математического

описания гипотеза отнюдь не может считаться правильной и

единственной. Для того чтобы выбрать наиболее вероятную гипотезу,
надо исследовать соответствие между моделью и объектом по всем

варьируемым в опыте параметрам. Чем шире диапазон вариаций
или планомерных изменений опыта, на протяжении которого

модель «следит» за реальной системой, тем больше вероятность (в
смысле максимума правдоподобия) такой модели.

Хорошим примером подобной ситуации может служить
положение, создавшееся с аррениусовой кинетикой, успешно
применявшейся к большому кругу задач, но оказавшейся

неудовлетворительной при высоких скоростях химических реакций и в

неравновесных системах.

В настоящее время представляется очевидной ограниченность

аррениусовой кинетики, которая имеет смысл только вблизи
равновесия (т. е., строго говоря, при малых возмущениях, когда

система еще может считаться квазиравновесной), другими словами,

когда для системы может быть определена одна температура

(рассматриваемая как параметр максвелл-больцманова

распределения).
Однако общеизвестны случаи, когда нужно различать

поступательную, колебательную, вращательную температуры, когда

различные по вещественному составу компоненты системы имеют

сильно различающиеся температуры, когда вообще системе или

ее отдельным компонентам нельзя приписать какой-либо

температуры (стационарные и релаксирующие неравновесные системы).
Во всех этих случаях использование аррениусовой кинетики,

строго говоря, неправомочно, а обычное выражение для
константы скорости химической реакции не имеет смысла.

Рассмотрение кинетических задач, которые гораздо

существеннее зависят от детального механизма молекулярных

взаимодействий и заселенности квантовых уровней молекулы, чем

равновесные свойства тел, требует гораздо большего объема информации
о системе.

Надо заметить, что неравновесные эффекты могут
проявляться в системе, находившейся вначале даже в состоянии

равновесия, если в ней имеют место любые процессы, протекающие
с конечной скоростью. Такие процессы обязательно приводят
к возмущению максвелловской функции распределения. В част^
ности, такое возмущение может происходить за счет

неупругих соударений, в результате которых происходит обмен
массой и перераспределение внутренней энергии сталкивающихся

частиц. Поэтому протекание в системе химических реакций всегда

создает неравновесность, которой весьма часто можно пренебречь
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(с довольно неясной степенью приближения) в классической ар-

рениусовой кинетике, но, безусловно, нельзя не учитывать в

реакциях при высоких энергиях, в плазмохимических процессах,
радиационной химии, ударных трубах и т. п. Так, например,
хорошо известно, что термическая диссоциация двухатомных молекул

наряду с нарушением больцмановского распределения приводит
к уменьшению колебательной температуры по сравнению с

поступательной, что сказывается как на скорости диссоциации, так и

на ходе колебательной релаксации. Неравновесность, создаваемая
в системе самой химической реакцией (кстати говоря, неплохой

пример закона обратной связи), и дальнейшее протекание этой

реакции уже в неравновесных условиях является проблемой
обобщенной неравновесной химической кинетики; частным

предельным случаем этой кинетики (при малых скоростях реакций)
должна быть аррениусова кинетика, которая, надо полагать,

получит таким образом не только отчетливое обоснование, но и

границы применимости.

Строго говоря, в основании решения такой задачи должно
быть положено исследование уравнения Больцмана (или
уравнения типа Паули), из которого при учете в нем химических

реакций и процессов релаксации по внутренним степеням свободы

реагирующих молекул должны быть получены частные сотношения

для различных случаев, в том числе обычные уравнения
химической кинетики, и найдены выражения (различной степени

общности) для так называемых констант скоростей химических реакций.
Такой обобщенной химической кинетики в настоящее время

еще нет, но усилия, направленные на ее создание, безусловно, уже

раскрыли новые аспекты теории.

Настоящая книга состоит из трех глав и приложения.

В первой главе рассмотрен вопрос о численном

интегрировании на ЭВМ систем обыкновенных нелинейных дифференциальных
уравнений классической химической кинетики. Решение таких

систем даже в не очень сложных случаях в настоящее время
возможно только численными методами. Однако применение

стандартных методов численного интегрирования на ЭВМ систем

уравнений химической кинетики сталкивается со значительными

трудностями в том очень важном для химии случае, когда в реакции

участвуют химически активные частицы (атомы, радикалы и т. п.),
константы скоростей реакций которых при прочих равных
условиях на много порядков превышают остальные, входящие в

уравнения константы скоростей.
В этой главе излагается разработанный нами алгоритм

численного решения систем кинетических уравнений для сложных

химических реакций с заданной степенью точности, который
успешно преодолевает трудности, возникающие из-за указанного

характера соотношения величин констант скоростей химических

реакций. Этот алгоритм особенно важен, когда рассматривается не
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брутто-механизм химического процесса, а совокупность так

называемых элементарных стадий его. Развитый метод решения

применим и к уравнениям того же типа, описывающим кинетику
ионных реакций, кинетику заселенностей уровней и т. п.

Изложение разработанных методов и алгоритмов

иллюстрируется решением конкретных задач химической кинетики и

сравнением найденных решений с экспериментальными данными.

Специальному рассмотрению подвергнут также вопрос о влиянии на

химический процесс вариации условий протекания реакций
(температура, давление, начальное соотношение компонентов и т. п.).

Кроме того, дана формулировка подхода к определению
чувствительности математической модели какого-либо механизма

сложной химической реакции к изменению значений констант

скоростей отдельных этапов реакции и различных их групп. Этот

подход состоит в совместном решении системы уравнений
химической кинетики и уравнений, определяющих производные
концентраций компонентов реакции по константам скоростей
химических реакций, входящих в исследуемый механизм. Полученные
решения такой системы позволяют оценить влияние различных
констант скоростей на отдельных стадиях химического

процесса. Надо заметить, что, по-видимому, развитый метод
исследования чувствительности механизма химической реакции к значению

тех или иных констант отнюдь не является единственным и

наиболее эффективным, тем более что интерпретация получаемых
с его помощью кривых отнюдь не проста. Это скорее постановка

задачи, чем ее практически рациональное решение.
Во второй главе изложен разработанный авторами метод

нахождения (выбора) наиболее вероятных механизмов химических

реакций. Этот метод основан на сочетании так называемого метода

оврагов с методом максимума правдоподобия. Значение
предлагаемого метода состоит в том, что в нем одновременно с

нахождением наиболее вероятного механизма (в расчет закладываются

альтернативные механизмы и ищется наилучшее при заданной
степени точности описание экспериментальных кинетических кривых)
определяются неизвестные ранее константы скоростей*
элементарных стадий химических реакций, которые вначале могли быть
неизвестны совсем или известны с малой точностью. Другие
экспериментальные данные (кроме кинетических кривых) при этом
в расчет не закладываются, образуя совокупность частных

контрольных требований, которым должен удовлетворять наиболее

вероятный механизм. Дискриминирующее действие в выборе та-

* Речь идет, конечно, об определении констант скоростей «равновесных
химических реакций», ибо только в этом случае они не зависят от времени и

концентраций, а зависят только от температуры. В случае неравновесной
химической кинетики они являются, вообще говоря, функциями сечений,
распределений, начальных концентраций и времени.



кого механизма имеют также общие контрольные требования,
представляющие собой формулировки общих для химических

процессов законов и характерных их особенностей. Применение
метода иллюстрируется на модельной задаче и конкретной задаче
радиационного изотопного Н — D-обмена с гидроксильными
группами на поверхности А12О3.

Необходимо отметить, что метод оврагов является
нелокальным методом нахождения минимумов функций многих переменных.

Другими словами, в районе начальных значений констант

определяются все (если их несколько) минимумы суммы квадратов
отклонений, так что имеется возможность определить координаты
наиболее глубокого минимума. Кроме того, для повышения
надежности получаемых результатов можно начинать поиск констант,
исходя из нескольких начальных приближений. При решении
задачи выбора наиболее вероятного механизма сложной химической

реакции и нахождения уточненного значения констант скоростей
ее элементарных стадий особенно существенной является

совместная работа физико-химиков (экспертов) и математиков. Задача
физико-химиков состоит в основном в том, чтобы найти и

сформулировать частные контрольные требования для рассматриваемой
конкретной проблемы.

В случае, когда выявится недостаточность экспериментального

материала для убедительного выбора одного механизма из ряда

альтернативных, разработанный метод позволяет указать
минимальное число необходимых дополнительных экспериментов для

решения этой задачи и, таким образом, образует основу для
планирования химического эксперимента.

В третьей главе изложены некоторые результаты применения
метода Монте-Карло к решению задач физической и химической
кинетики и релаксации систем с химическими реакциями. Как

известно, метод Монте-Карло заключается в статистическом

моделировании какой-либо случайной величины с целью определения

параметров ее распределения. Задачи физической и химической
кинетики могут быть представлены как задачи временной эволюции
распределений тех или иных величин, описывающих состояние и

поведение ансамблей, состоящих в общем случае из молекул
(атомов, фрагментов), электронов, ионов и других частиц. Так как

метод Монте-Карло применим к любым задачам, допускающим
статистическое описание, то естественным является его использование

для изучения релаксационных процессов в первую очередь, а в

более общем случае — для исследования любых процессов
перехода молекулярных систем из некоторого начального

неравновесного состояния в конечное — равновесное. Метод Монте-Карло
позволяет не рассматривать системы газокинетических уравнений,
а реализовать своего рода математический эксперимент,
моделирующий одновременно релаксацию и собственно химическую
реакцию как перегруппировку атомов при столкновении молекул.



Он дает возможность найти мгновенные функции распределения
частиц системы по скоростям и по внутренним степеням свободы
и тем самым определить зависимость от времени моментов этих

функций. Кроме того, в ходе реализации случайного
марковского процесса могут быть вычислены средние передачи энергии
за столкновение, частоты последних и т. д.

Исключительно важное значение для приложений метода

Монте-Карло имеет тот факт, что его использование не связано ни

с какими ограничениями начальной степени отклонения системы

от равновесия, которые могут быть произвольно велики. При
этом количество исходных данных, которое необходимо заложить

в расчет на ЭВМ, невелико, а часть из них может быть получена
в процессе реализации самого метода статистических испытаний.

Для решения задач об эволюции молекулярных систем к

равновесному состоянию (задач существенно нелинейного типа)
необходимо сочетание метода Монте-Карло с методом периодических

граничных условий или с заменой непрерывного пространства ско-^

ростей дискретными уровнями. Такой метод позволил получить

ценную информацию о процессе максвеллизации двух газов

различной начальной температуры, о воздействии химической
реакции на распределение по энергии и влиянии созданного таким

образом нового распределения на скорость химической реакции,
о многоквантовых колебательно-поступательных перехода и

многих других вопросах физической кинетики систем при

отсутствии и наличии химических реакций.
В частности, показано, что 1) процесс максвеллизации смеси

двух газов с различными начальными температурами является

двухстадийным; 2) при D/RT ^ 5 при протекании химических

реакций имеет место разрыв между средними энергиями молекул
разных компонентов реагирующей смеси, 3) процессы
активации и дезактивации молекул при упругих столкновениях носят

ступенчатый характер, что приводит к изменению температурной
зависимости константы скорости реакции; 4) в ряде важных
случаев необходим учет многоквантовых

поступательно-колебательных переходов, так как в рамках модели одноквантовых

переходов нельзя достигнуть даже качественного согласия с

экспериментальными данными.

Нам представляется, что полученные результаты убедительно
свидетельствуют о том, что метод Монте-Карло должен и может

стать одним из основных способов изучения поведения

молекулярных систем и эволюции распределений в различных задачах
физической кинетики.

В приложение вынесены четыре работы, в которых
рассмотрены некоторые дополнительные вопросы применения
вычислительной математики к задачам химической и физической кинетики,
не вошедшие по своему содержанию и по степени завершенности
в основные главы настоящей книги.



В первом приложении рассмотрены на конкретном примере
плазмохимической задачи возможности использования для

рассмотрения кинетических проблем аналоговых вычислительных

машин и показано, что они могут быть полезны для

первоначального «грубого» моделирования, особенно при рассмотрении
макрокинетики процессов, вопросов оптимизации технологических
схем и управления ими.

Во втором приложении метод, развитый во второй главе

настоящей книги, успешно применен к решению важной задачи
физической кинетики — нахождению вероятностей перехода по

данным о заселенностях уровней. Есть все основания полагать,

что этот метод при соответствующем расширении и уточнении
окажется полезным при изучении широкого круга задач, описываемых

аналогичными по структуре уравнениями.
В третьем и четвертом приложениях рассмотрен вопрос о

возможностях применения методов распознавания для решения
кинетических задач и о реализации нового подхода к численному

интегрированию систем кинетических уравнений Больцмана.
В книге в основном изложены результаты, полученные в

работах теоретической группы лаборатории радиационной химии

Института нефтехимического синтеза АН СССР.

Книгу написал коллектив авторов: § 1,2,5, глава I — Ф. А.

Бухман, В. Г. Меламед, Л. С. Полак, Ю. Л. Хаит; § 3, глава I —

Ф. А. Бухман, В. Г. Меламед, Л. С. Полак; § 4, глава I —

Л. С. Полак, Ю. Л. Хаит, Э. Н. Червочкин. Глава II — С. Г.

Гагарин, Ю. А. Колбановский, Л. С. Полак. Глава III—С. А. Дени-
сик, Ю. Г. Малама, С. Н. Лебедев, Л. С. Полак. Приложение 1 —

Л. А. Крючкова, Г. П. Лычкина, А. В. Нетушил, Л. С. Полак,
Ю. Л. Хаит, Н. И. Челноков, Э. Н. Червочкин, Ю. Р. Шнейдер;
приложение 2 — С. Г. Гагарин, Л. С. Полак; приложение 3 —

Ш. А. Губерман, Л. С. Полак; приложение 4 — Л. С. Полак,
А. Н. Темчин.

Необходимо отметить в заключение, что результаты первой
главы получены и изложены в плодотворном творческом

содружестве с сотрудниками кафедры мерзлотоведения геологического

факультета МГУ им.М. В.Ломоносова, третьей главы—с
сотрудниками группы вычислительных методов ВНИИЯГГ Министерства
геологии СССР, приложение первое — с сотрудниками кафедры
автоматики и телемеханики МЭИ Министерства высшего и среднего

специального образования СССР.
Считаю своим приятным долгом выразить признательность за

помощь в подготовке книги к печати сотрудникам лаборатории
радиационной химии Н. М. Рытовой и Т. А. Грачевой.

Л. Полак



Обозначения

Cj — объемная концентрация /-го компонента;

cj
— массовая концентрация /-го компонента, вес. доли;

с — квазистационарная концентрация;
к г
— константа скорости £-й реакции;

Кр — константа равновесия при постоянном давлении;

к0 — предэкспоненциальный множитель;

Еа — энергия активации, ккпл/молъ;
W —

скорость реакции;
Т — температура газа;

р — давление газа, апгм;

р
— плотность газа, г/см3;

v(z)—скорость высокотемпературной газовой струи в точке z;

Н — энтальпия газа;

hj — энтальпия /-го компонента;

hji — коэффициенты в разложении энтальпии /-го компонента по

температуре;

Ahj — теплота образования /-го вещества;

Ср
— удельная теплоемкость при постоянном давлении;

cv — удельная теплоемкость при постоянном объеме;
D — энергия диссоциации;

t — время;

Л£ — шаг численного интегрирования;
т — время релаксации;

т0
— время реакции;

тг — среднее время свободного пробега;
к — постоянная Больцмана;
R — газовая постоянная;

\i — молекулярный вес;

< X > — математическое ожидание величины X;

L — функция правдоподобия;
Р — вероятность;

£ — случайное число, равномерно распределенное в интервале

(О, 1)



Г лава I

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ СИСТЕМ

ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
ХИМИЧЕСКОЙ КИНЕТИКИ

§ 1. Метод интегрирования
на ЭВМ уравнений химической кинетики

Как известно, математическое описание химических реакций
оперирует с производными концентраций (скоростью реакции)
и их связью со значениями самих концентраций. Выбор
дифференциальных, а не интегральных уравнений для описания

химических процессов обусловлен тем, что величины Cj (t) имеют вполне

ясный физический смысл, в то время как параметры интегрального

уравнения устанавливают лишь тот факт, что сами концентрации

являются некоторыми функциями времени Cj
= Cj (t), где / = 1,

2,..., п — число компонентов, участвующих в реакции.

В системы дифференциальных уравнений, определяющих
зависимость во времени Cj от других концентраций, входят

коэффициенты, называемые константами скоростей химических

реакций. Без использования электронных вычислительных машин

(ЭВМ) решение таких систем дифференциальных уравнений для

сложных химических реакций, как правило, невозможно. Они
заменяются системами алгебраических уравнений с помощью

применяемого в химической кинетике метода стационарных
концентраций, в котором bj полагаются равными нулю. При этом

теряется временная развертка процесса и возможность исследования

влияния различных условий (в частности концентраций различных
компонентов в начальный момент времени, температуры и т. д.).

Разработка эффективных методов численного интегрирования
системы дифференциальных уравнений, описывающих сложные

химические реакции, протекающие с конечными скоростями,
может позволить решить эти вопросы. Нахождение решения системы

дифференциальных уравнений кинетики сложных химических

реакций дает возможность получить следующую информацию.
1. При известных значениях констант скоростей для

различных стадий сложной реакции можно в течение разумного

машинного времени просчитать различные варианты механизмов,
предлагаемых для исследуемой сложной реакции.

2. Для каждого из рассматриваемых механизмов можно

получить значения концентраций всех компонентов как функции
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времени на всем протяжении реакции (при принятой совокупности
констант скоростей). Следовательно, сравнение вычисленных и

экспериментальных значений концентраций возможно для любого

их числа и любых промежутков времени, доступных для
эксперимента.

3. На математической модели, соответствующей каждому
известному механизму сложной химической реакции, можно

изучить степень чувствительности данного механизма к изменению

констант скоростей отдельных этапов реакции и различных их

групп, а также степень чувствительности к вариациям условий
протекания реакции (температуры, давления, начального

соотношения концентраций и др.)- Существенно, что такое исследование

может быть проведено без каких-либо дополнительных
экспериментальных данных. Кроме того, применяя специальные
математические методы (метод градиента и др.) при обработке
экспериментальных данных, можно находить приближенные значения

констант скоростей, а также определять минимально необходимое
число экспериментов для получения констант с заданной степенью

точности.

Однако, как будет подробно показано ниже, при

интегрировании на ЭВМ систем дифференциальных уравнений кинетики

сложных гомогенных изотермических реакций значительные

математические трудности возникают в том очень важном для химии

случае, когда в реакции участвуют химически активные частицы

(атомы, радикалы), константы скоростей реакций которых при

прочих равных условиях на много порядков превышают остальные

входящие в уравнения константы скоростей. В указанном случае

применение обычных методов численного интегрирования на ЭВМ

практически чрезвычайно затруднительно.
В настоящей работе рассматривается метод численного

интегрирования на ЭВМ систем дифференциальных уравнений
кинетики указанных химических реакций, позволяющий без особых
затруднений получить их решение, т. е. временной ход
образования и гибели различных промежуточных и конечных продуктов

реакции, с заданной точностью.

Уравнения химической кинетики для изотермических
гомогенных реакций (в закрытых системах) можно представить в

следующем виде*:
п п

ci = 2 2 азтрстср + 2 &РСР (1)

(*>*„, / = 1,2,...,в).
* Здесь для простоты опущены редко встречающиеся реакции нулевого и

третьего порядков. Их включение в систему (1) не внесет существенных

изменений в проводимые ниже рассуждения. Надо заметить, что данная форма
является универсальной и единственной формой записи уравнений химиче-
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Здесь Cj — безразмерные концентрации, связанные с

размерными множителями с0
= T0/V0T, где То = 273 °

К, VQ =
= 22,4 л/молъ, Т — температура; не равные нулю коэффициенты
a jmp и Р;р представляют собой соответственно константы скоростей
реакций второго и первого порядков; последние приведены к

размерности сек'1; t0 — время начала реакции.
Величины, входящие в систему (1), удовлетворяют следующим

условиям: 1) 0 ^ cj <^ 1 (/ = 1,2,..., п); 2) <xjmv симметричны по

отношению к перестановкам индексов тир; 3) если хотя бы один
из индексов тир равен /, то соответствующие коэффициенты,
если они отличны от нуля, отрицательны. Алгебраические
уравнения баланса позволяют снизить порядок системы (1).
Группируя в каждом уравнении системы (1) члены, содержащие

Cj, перепишем ее в следующем виде:

(/ = 1,2,...,n), (2)
где

п п

а2 (0 = S S °Wcmcp + 2 fypCp (m =hhP=f= /),

Очевидно, что bj (t), в отличие от а7- (^), может линейно

зависеть также от Cj (t). Так как ctj (t), bj (t) — суммы неотрицательных

членов, то (ij (t) > Aj > 0, bj (t) ;> Bj > 0, где A 7-, 57- —
постоянные, являющиеся нижними гранями функций aj (t), bj (t) при t ^>
>v

Например, для реакций первого порядка bj (t) = 57- = р77-.

1. Состояние вопроса

Использование ЭВМ при решении задач химической кинетики

в настоящее время резко возросло (см., например, [1—5]). Однако,
как отмечено выше, применение стандартных методов численного

интегрирования к системам уравнений, описывающих сложные

химические реакции, встречает серьезные трудности. Это связано

с тем [1], что при участии в реакции реагентов с существенно
различной реакционной способностью (константы скоростей реакций,
приведенные к одной и той же размерности,- отличаются на 10 и

более порядков) некоторые из уравнений (например, описывающие
кинетику свободных радикалов) в процессе численного интегриро-

ской кинетики. Отметим также, что обобщение предлагаемого ниже метода

на случай открытых систем (с учетом гидродинамических явлений и не-

изотермичности) не представляет существенных затруднений.
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вания могут становиться с течением времени неустойчивыми *.
Отмеченная особенность специфична для указанных уравнений
химической кинетики, поскольку с точки зрения теории систем

обыкновенных дифференциальных уравнений при В • =f= 0 они

являются абсолютно устойчивыми.
Действительно, рассмотрим поведение интегральных линий

одного из уравнений вида (2) у (t) = a (t) — Ъ (£, у) у. Обозначим

ф (*) = Уг (*) ~ У2 (*)» гДе Уг (*) (* = 1, 2) суть решения этого

уравнения, соответствующие заданным различным начальным
условиям. Добавляя и вычитая Ь (t, у2) у2, получаем

ф (t) = - Ь (*, у^ Ф
-

у2 [b (*, y±) - Ъ (*, у2)].

Поскольку, согласно указанному выше, у >0, то при уг >>

-^> Учу т. е. ф >» 0, имеем ф <^ 0 и наоборот. Таким образом,
интегральные линии при интегрировании слева направо сближаются,
причем с возрастанием величины Ъ (£, у) устойчивость по начальным

условиям увеличивается [2].

Однако, как будет показано ниже, при достаточно больших
значениях Ъ (t, у) в процессе численного интегрирования обычными

методами возникает осцилляция решения рассматриваемого
уравнения с амплитудой, зависящей от шага интегрирования. В
результате этого интегрирование систем подобных дифференциальных
уравнений химической кинетики с помощью стандартных методов
численного анализа практически невозможно.

К настоящему времени опубликованы работы, посвященные

исследованию различных задач химической кинетики, в которых
отмечаются трудности численного интегрирования систем

дифференциальных уравнений (1) в случае сложных химических

реакций [2—4]. В связи с этим в работе [2] было проведено
качественное исследование поведения интегральных кривых для уравнения
вида

у"
Q(*,y)

'

где Q (t, у) и G (t) — заданные функции, причем | Q (t, у) |< gf
I достаточно мало (для задач химической кинетики | Q | <^ т0, где

т0 — время реакции).
Очевидно, что указанное уравнение является частным для

класса задач химической кинетики, так как при этом необходимо,
чтобы Q = Q (t) < 0, и, кроме того, исключаются, например,
реакции рекомбинации. В работе [2] отмечается, что при (? < О

интегральные линии при интегрировании слева направо
стремятся к у = G (t), причем скорость сближения резко возрастает с ро-

* Этот вопрос будет подробно рассмотрен на стр. 20—21.
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стом [ Q | "*. В результате исследования [2] предлагается разностный
метод решения подобных уравнений (называемых авторами [2]

«stiff» уравнениями), представляющий интерес в теории
электрических цепей и проблеме управления ракетами, когда Q ^> О
и интегральные кривые при у =/= G (t) резко растут по модулю.
Применительно к задачам химической кинетики указанный метод
не получил развития.

Описанные трудности численного интегрирования задач
кинетики сложных химических реакций привели к попыткам

приближенного решения на ЭВМ путем линеаризации системы

уравнений (1) [3], которая обычно применяется с целью аналитического

исследования решения. Очевидно, что без получения оценки
точности решения при линеаризации системы этот метод не может быть
использован для численного интегрирования с помощью ЭВМ.

На особенности поведения системы (1) обращено внимание

в работе [4]*, где без какого-либо математического обоснования

предложен метод** счета, во многом аналогичный методу,

развитому в статье [1] и подробно описанному в следующем разделе.
Так, в работе [4] априорно утверждается, что в уравнениях для

некоторых концентраций, которые предполагаются малыми в

течение всей реакции, производные, начиная с некоторого момента

времени, также будут достаточно малы. В результате после того

как в процессе счета на ЭВМ определяется указанный момент

времени, правые части соответствующих уравнений предлагается

приравнивать нулю.
Таким образом, в работе [4] причины особенностей поведения

численного решения уравнений кинетики для сложных

химических реакций остались нераскрытыми, в силу чего в ней ошибочно

отрицается возможность предварительного (без результатов
численного интегрирования) определения тех уравнений, которые

могут в процессе интегрирования сделать систему неустойчивой.
Поэтому в [4] оказалось невозможным определить область
применимости метода счета и дать оценку его точности. В силу этого

применение метода затрудняется и в некоторых случаях (например,
для реакций второго порядка, см. ниже) может привести к

значительным ошибкам.

* Работа [4] стала нам известна, когда предлагаемый нами метод был уже

разработан и проверен на нескольких примерах.
*■* В указанном методе используется идея, сформулированная еще Боден-

штейном [5], известная как метод квазистационарных (или частично

стационарных) концентраций [6].
Идея Боденштейна более упрощенно была использована в работе Блек-

мора [D. R. Blackmore. Trans. Faraday. Soc, 62, 518, 415(1966)]. В
указанной работе дифференциальные уравнения химической кинетики для

компонентов с высокой реакционной способностью заменялись сразу

алгебраическими. Такая замена не всегда правильна. Нами показано, при

каких условиях такая замена может быть сделана корректно.
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2. Особенности решения системы уравнений (1)
при существенно различной
реакционной способности частиц,

участвующих в сложной химической реакции

Характер влияния химически активных компонентов на

решение системы уравнений (1) выясним, рассмотрев сначала для

простоты случай, когда только один &-й компонент обладает
высокой реакционной способностью [достаточные условия для этого

даются ниже неравенствами (4) и (5)].
Допустим, что все концентрации Cj (t) (/ = 1,2,..., п) при t ^> О

каким-то образом заранее определены. Тогда k-е уравнение в

системе (1), согласно (2), может быть записано в виде

4 (*) = - h (t) ск + ак (О,4! (3)

причем bK (t) и ак (£), определенные к-и уравнением в (1) и

известными концентрациями, предполагаются известными функциями
времени. G помощью уравнения (3), составленного лишь для

качественного исследования, будут получены оценки для анализа

поведения ck (t).
При указанном выборе ск (t) для рассматриваемого уравнения

возможны, очевидно, два случая.

1) На протяжении всей реакции, продолжающейся время
т0, выполнены следующие условия:

Ък (t) > Ъ5 (t) (/ = 1,2,..., k — l,k + I,..., n)f (4)

^ W- (5)

(Последнее из неравенств (5) вытекает из предыдущих, е —

заданная точность*.) Из рассмотрения системы (2) совместно с условиями

(4) и (5) следует, что к этому случаю заведомо относятся

компоненты, участвующие в реакциях первого порядка с относительно

большими константами скоростей |Р^|.
2) Нельзя заранее утверждать, что условия (4) и (5) выполнены

на всем протяжении реакции, но они имеют место по крайней мере
на некоторых ее участках. В этом случае высокая реакционная
способность компонентов может проявляться, например, в

реакциях второго порядка. Тогда выполнимость условий (4) и (5)
зависит от того, насколько велики концентрации, являющиеся

сомножителями у больших констант скоростей в выражении для

функции bk(t).
В простейшем случае, рассмотренном, например, в работе [6],

когда bk (t) == Bk^>ak (t) = Ак > 0, решение уравнения,

*
Поскольку значения различных концентраций изменяются (в диапазоне
[О, 1]) в широких пределах, велфщна ё^ДодаОД выбираться достаточно
малой по сравнению с единицей.
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получаемого при этом из (3), имеет вид

Так как 0 < ск (0) ^ 1, то при выполнении условий (4) и (5)
первое слагаемое, выражающее влияние начальных условий,
может быть исключено из рассмотрения при t > t0 = Ц^-, т.е.

когда exp (—Bkt) ^ е. Отсюда при t ^> t0 в пределах точности
имеем

причем cfe и, следовательно, ск (t) будут малы по сравнению с

единицей. Полученная в рассмотренном частном случае концентрация
cfe, известная как квазистационарная, широко используется в

химической кинетике.
Анализ поведения ch(t) в общем случае, когда ak = ак (t)

и bk = bk (t) определяются решением всей системы уравнений
химической кинетики, представляет значительные трудности.
Однако для компонентов, уравнения которых удовлетворяют
условиям (4) и (5), и в случае системы (1) также имеют место

квазистационарные концентрации. Очевидно, что последние вместе с тем

будут существенно отличаться от рассмотренных ранее в частном

случае. Действительно, из уравнения (3), поскольку аь (t) и bK (t)
предполагаются известными функциями времени,

с, (t) - с, (0) exp f- J Ък (s) ds] + J ак (s) exp [- $ Ък {г) dr\ ds. (6)

Отсюда, аналогично рассмотренному выше частному случаю,

первое слагаемое, выражающее непосредственное влияние

начальных условий, становится пренебрежимо малым при t > tQ —

=

i? .
Из ограниченности аи (t), Ъи (t) следует, что всегда можно

подобрать такие d{ = const ж gi~ const (i = 1,2), что dx ^
<ak (t) < d2i g± < bk (t) < g2, причем d{ > 0, gi > 0 и,
согласно (5), gl > Bk.

Тогда
t t

ax [1 — exp (— glt)] < ^ ak (s) exp [— $ bk (r) dr] ds <
о s

<a2[l— exp(— g2t)],
где
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Из уравнения (6) при t > tQ, согласно указанному выше,
в пределах точности имеем

ai <cft (t) <a2.

Поскольку, согласно неравенству (5), сч<^ 1 (i = 1,2), получаем,
что концентрации рассматриваемых высоко реакционноспособных
элементов становятся малыми по сравнению с единицей и,

следовательно, изменение ak (t) и bh (t) при t ^> t0 определяется
в основном концентрациями веществ, обладающих относительно

м алой реакционной способностью по сравнению с ck (t). Тогда
из непрерывности решения уравнения (3) заведомо найдется
такое б ^> 0, что при t G (t, t + 6) имеет место

*

где

х (t\ _
Ч (О

Таким образом, если в системе (1) имеется уравнение, для

которого условия (4) и (5) выполняются в течение всей реакции, то

при всех t ]>' погрешность при замене соответствующей
©1

концентрации ck (t) на ck (t) становится меньше заданной, а,
согласно (3), ck (t) — сколь угодно близкой к нулю. Характерно, что

при этом отдельные слагаемые в правой части уравнения (3)
велики по сравнению с величиной ck(t).

В дальнейшем указанную функцию ck (t) будем называть

квазистационарным решением уравнения (3). Очевидно, что

квазистационарный режим для отдельных веществ, участвующих в реакции,
типичен для реакций, в которых имеются стадии с достаточно

большими и различными по порядку величин константами скоростей.
При этом квазистационарное значение изменяется с течением

времени в зависимости от поведения отдельных, менее реакционно-
способных компонентов реакции.

В случае, когда имеется несколько реакционноспособных
компонентов, константы скоростей которых значительно превышают

остальные, рассуждения проводятся аналогично.
Квазистационарные значения при этом определяются из решения системы

алгебраических уравнений, получаемых приравниванием правых частей

соответствующих уравнений в системе (1) нулю. Времена выхода

указанных компонентов на квазистационарный режим обратно
пропорциональны соответствующим значениям Bh. Поскольку
входящие в bk (t) константы скоростей существенно зависят от

температуры, время выхода ck (t) на квазистационарный режим
пРи различных условиях протекания реакции может изменяться

Если Ьк = Ьк (t, c&), то сЛ находится аналогичным образом.
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в значительных пределах, уменьшаясь с повышением

температуры. Из определения ck (t) видно, что величина ah (t) влияет на

величину соответствующего квазистационарного значения ch (t).

3. Алгоритм численного интегрирования систем

уравнений химической кинетики (1) при условиях (4) и (5)

Как было показано выше, если в правой части уравнения для
какой-либо концентрации имеется один или несколько членов,

содержащих указанную концентрацию с коэффициентами, которые
достаточно велики по модулю, то за короткий (по сравнению с

длительностью реакции) интервал времени данная концентрация

практически достигает своего квазистационарного для данного

момента значения. Из уравнения (3) следует, что при выполнении

условий (4) и (5) концентрации ck (t), достигнув (с заданной

точностью) своих квазистационарных значений при th =
'

8

', будут

оставаться в квазистационарном режиме и при t ^> tk.
Однако численное интегрирование рассматриваемой системы

нелинейных уравнений, включающей в себя одно или несколько

уравнений, удовлетворяющих (4) и (5), практически с любым
отличным от нуля шагом интегрирования при t^>tk приводит к

осцилляции решения вокруг своего квазистационарного значения.

Это связано с дискретностью счета при численном интегрировании,
так как вычисление правых частей в системе (1) производится в

фиксированных точках шага интегрирования. Для пояснения

введем обозначение zk (t) = ck (t) — ck (t). Тогда, вычитая из (3)
уравнение, которому, по определению, удовлетворяет концентрация

(

получаем, используя теорему Лагранжа,

ch (t) = -Mh (t) zk (t), (7)
где

Mh (t) = bk (*, ck) + *ft g» > bk (t, ck);

)» если

56 («»W. cfc(0), если

При выполнении условий (4) и (5) из уравнения (7) имеем,
что малое увеличение | z (t)
в результате которого \z (t)

приводит к резкому изменению ck (t),
убывает. Отсюда с течением времени

функция z (t) стремится к нулю. Однако при численном

интегрировании с шагом Д£ > -5- (который при условиях (4) и (5) до-
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статочно мал) zh (t), а следовательно, и ck (t) в пределах одного
шага меняет знак. В результате численное интегрирование
уравнений (2), удовлетворяющих условиям (4) и (5), приводит к

осцилляции решения ck (t) относительно ck (t). Уменьшение шага

интегрирования, естественно, уменьшает амплитуду осцилляции.

Однако, когда ck (t) выходит на квазистационарный режим, т. е. z (t)
находится в пределах точности вычислений, интегрирование даже

с практическим минимальным шагом приводит к осцилляции,

амплитуда которой с течением времени растет. Поэтому численное

интегрирование рассматриваемой системы, одно или несколько

уравнений которой удовлетворяют условиям (4) и (5), приводит к

крайне малому шагу интегрирования (заведомо не растущему с

течением времени), и, следовательно, большому времени счета и

накоплению ошибки. Если же интегрирование производится с

постоянным шагом, то при этом точность счета быстро падает,

осцилляция решения происходит с резко возрастающей
амплитудой, что приводит к переполнению машины.

Как известно, при определенных условиях химический

процесс может иметь осцилляционный характер [8]. Однако, если

амплитуду колебаний численного решения, вызванных

дискретностью счета на ЭВМ, можно понизить, уменьшая шаг

интегрирования, то амплитуда «истинных» осцилляции [8], обусловленных
колебательным характером химического процесса, при этом

остается неизменной. Кроме того, амплитуды осцилляции решения,
обусловленные дискретностью счета, могут возрастать и

неограниченно, что может привести к нарушению закона сохранения вещества

и даже вызвать появление отрицательных значений концентраций.
С «истинными» колебаниями решений системы (1) подобные
явления не происходят. Таким образом, различное поведение двух
типов колебаний решений системы (1) в принципе позволяет

отделить эти колебания друг от друга.

На основе изложенного предлагается следующий алгоритм
решения задач химической кинетики при участии в реакции
химически активных частиц. Интегрирование системы (1) в этом

случае должно проводиться в два этапа.

На первом, переходном этапе, где величина концентраций
существенно зависит от выбранного начального состояния,

система интегрируется как задача Коши одним из методов численного

анализа. Продолжительность первого этапа, как указывалось
выше, определяется величиной соответствующих величин bk (t)
[практически порядка 10/min Bk, если имеется несколько реакцион-

носпособных компонентов, уравнения которых удовлетворяют
условиям (4) и (5)]. При этом интегрирование должно обязательно

производиться с автоматическим выбором шага, а начальное

значение шага должно приниматься менее I/max Bk.
Учитывая, что величины концентраций отличаются на много

порядков, а масштабирование затруднительно в силу их резкого
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изменения с течением времени, интегрирование должно

проводиться с заданной относительной точностью, т. е. по нескольким

значащим цифрам независимо от порядка самих величин.

Конечной целью в процессе интегрирования задачи на первом

этапе является выход реакционноспособных компонентов на

квазистационарный режим. При этом после каждого шага

интегрирования производится сравнение ck (t) и ck (t). Если разность между
решением уравнения, обладающего рассмотренной выше

особенностью, и его квазистационарным значением в какой-либо момент

времени оказывается в пределах точности, то производится переход

ко второму этапу интегрирования. При этом порядок системы

понижается, а указанное дифференциальное уравнение заменяется

алгебраическим (путем приравнивания правой части его нулю).
В общем случае, когда имеется несколько реакционноспособных
элементов, в результате замены получается система нелинейных

алгебраических уравнений. Как будет показано ниже, при

условиях (4) и (5) подобная замена практически не вносит

расхождений и не дает накопления ошибки, однако резко увеличивает

эффективность счета, позволяя полностью снять указанные выше

трудности.
В общем случае получаемую на втором этапе систему

нелинейных алгебраических уравнений необходимо решать одним из

итерационных методов при каждом обращении к подпрограмме
вычисления правых частей системы дифференциальных уравнений.
При этом время счета может значительно возрасти, в связи с чем

подобные задачи целесообразно решать на машинах с большим

быстродействием.

4. Оценка точности алгоритма

Предлагаемый алгоритм, связанный с последовательной
заменой дифференциальных уравнений для некоторых высокореак-

ционноспособных компонентов, удовлетворяющих условиям (4)
и (5) при tk =

' "8*
, на соответствующие алгебраические уравне-

ния, обеспечивает получение решения системы (1) с заданной
степенью точности.

Для доказательства этого рассмотрим изменение отклонения

zu (0 решения (3) от своего квазистационарного решения при t ^>

^> th. Учитывая определение ch (t), уравнение для zh (t) из (3)
может быть записано в виде

причем, согласно рассмотренному выше, Mh !> bh (t, ck). Из
уравнений (1)и (2) следует, что при выполнении выражения (4) \dk (t) \
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имеет порядок akbk, тогда как \bk\ — порядок bl. Отсюда

\4 + Mkzk\^Nfn (8)

где Nh — некоторая величина, являющаяся верхней гранью

выражения, стоящего в левой части (8); при условии (5) Nk<^Bh.
Рассмотрим интегральные кривые (8) и прямые zk = + Rk,

где Rk = Nk/Bk. Очевидно, что если при некотором t* > О имеем

zk (**) ^> ^fe» T0 %k (**) <С 0, и интегральная линия (8) может
только убывать до пересечения с прямой zk = Rk. Если zk (t*) ^> RkJ
то zk (t*) ^> 0, и интегральная кривая (8) возрастает до
пересечения с zk

= — Rk. Если же \zk (t*) | ^ i?ft, то интегральные кривые

(8) при t ^> t* не смогут пересечь соответственно прямые zk
=

= + Rk. Отсюда

min{zk (Г); — Rk} <zh (t) < max{zk (Г); Rk}

при t ^> t* и при £* > ^fe; когда реакционноспособные компоненты

достигнут (с заданной точностью г) квазистационарных значений,
имеет место оценка

min {e; Rk} < zk (t) < max {e; Rh}.

Так как при условии (5) Rh достаточно мало, то при t ^> th
отличие квазистационарного решения от истинного будет в пределах
точности вычислений. Таким образом, предлагаемый алгоритм
решения систем дифференциальных уравнений, которые описывают

кинетику сложных химических реакций при наличии реакцион-

носпособных компонентов, удовлетворяющих условиям (4) и (5),
обеспечивает получение решения с достаточной для практических

целей точностью.

Верхняя оценка величины квазистационарных

концентраций, а также количественная оценка точности алгоритма,

зависящие от соотношения констант скоростей элементарных стадий
реакции [т. е. степени выполнения условий (4) и (5)], могут быть

получены аналогичным путем в каждом конкретном случае.

Очевидно, что приведенные оценки являются завышенными. Поэтому
выполнение уравнений баланса [которые являются практическими

критериями оценки результатов интегрирования системы (1)]
будет в действительности осуществляться с большей точностью, чем

та, которая следует из полученных выше оценок.
Заметим в заключение, что в случае реакции второго и

высших порядков после выхода на квазистационарный режим
необходимо в ходе решения время от времени контролировать
выполнение условий (4) и (5). Если в процессе реакции Ък уменьшается так,

что bfr <С д» » гДе А£—шаг интегрирования, то для

обеспечения заданной точности соответствующее алгебраическое уравнение
необходимо заменить исходным дифференциальным и т. д.
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Развитый выше метод будет применен в следующих разделах
настоящей главы к различным задачам кинетики сложных

химических реакций.

§ 2. Расчет кинетики хлорирования этилена

и анализ точности алгоритма решения

Сложная многостадийная реакция хлорирования этилена

представляет значительные трудности для исследования. Ниже

получены зависимости Cj
=

Cj (t) для концентраций
промежуточных и конечных продуктов этой реакции по механизму
присоединения в интервале 600—1200° К и при различных начальных

соотношениях С12 : С2Н4. Проведен подробный анализ точности

результатов численного интегрирования системы дифференциальных
уравнений кинетики хлорирования этилена. Этот анализ имеет

и более общее значение для характеристики развитого на стр.

20—22 метода численного интегрирования кинетических

уравнений сложных химических реакций.
На основании имеющихся данных считают, что субститу-

ционное хлорирование может идти по двум направлениям [8, 9]:

С2Н4 + С12 —>■ С2Н4С12,

С2Н4С12 -+ С2Н3С1 + HG1, (9)

С2Н4 + С12 -> С2Н3С1 + НС1. (10)

В первом случае винилхлорид образуется через продукты

присоединения (С2Н4С12), а во втором случае идет непосредственное

замещение [10]. В основу настоящих расчетов положен первый
из приведенных механизмов, который многими авторами считается

основным. Для механизма (9) была составлена схема реакций,
которая представляет собой одну из возможных моделей реакции
хлорирования этилена.

1. Постановка задачи

Нами рассмотрена следующая схема,, в которой использованы

известные в литературе элементарные стадии [11—14]*:

1) С1 + С2Н4->С2Н4С1

2) С2Н4С1-*С1

3) С2Н4С1 + С1->С2Н4СЛ2

4) С2Н4С1 + HG1 -> С2Н5С1 + G1

5) С2НбС1 + G1 -> С2Н4С1 + HG1

(И)

* Авторы благодарят В. Я. Штерна и А. Ф. Ревзина за помощь, оказанную

при составлении данной схемы.
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6)

7)

8)

9)

ю)

11)

12)

13)

14)

15)

16)

17)

18)

c2h4ci + ci2 -> с2н4а2 + а

с2н4а2 + а -► с2н4а + а2

с2н4а2 + а -> с2н3а2 + на

с2н3а2 + на -ч> с2н4а2 + а

с2н3а2 + а, -> с2н3а3 + а

c2h3ci2

С2Н3С12

а ->с2н3а3

С2Н3С1+С1

+ + 2 +

С2Н4С1 + С2Н4С1-> продукты

С2Н3С13 + а ->С2Н2С13 + НС1)

Так как более глубокое хлорирование нас не интересует, то мы

ограничились приведенными реакциями.
Соответственно схеме (11) была составлена система двенадцати

нелинейных обыкновенных дифференциальных уравнений (12),
которая была численно проинтегрирована на ЭВМ «Стрела» ВЦ
МГУ. Интегрирование было проведено с помощью рассмотренного
ранее алгоритма интегрирования систем уравнений кинетики
сложных химических реакций (стр. 20).

Л — кисгс0+ к^с\с0

— кпсдс2 — к12снс2

кис10с2 + 2кисхс0 —

•ft
= &lC2C3 •

+ к7с5с2 -

dcQ

do*
It

— k^c^c2 — к%със2

kbCtC2 -\- k%cbc2 —

(12)
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—8 = к8с5с2 — kdcsc6 — -f- — к12с8с2 —

(12)

—•

dt

dC\2

If

В системе (12) дйя удобства приняты следующие обозначения:

Вещество

С12
С1

с2н4
С2Н4С1
G2H4CI2

НС1

Концентрация

С\

Сз

ч

се

Вещество

С2Н5С1

С2Н5С12
С2Н3С1з
С2Н3С1

Продукты
семнадцатой
реакции
С2Н2СЬ

Концентрация]

с7

с»

с9

Сю

СП

С12

В случае, если рассматриваемая реакция происходит в потоке, то

к системе дифференциальных уравнений кинетики (12) следует
добавить уравнения гидродинамики и решать полученную систему

совместно, как это сделано, например, в работе [15] для процесса

конверсии метана в ацетилен.
В качестве начальных условий системы уравнений (12)

задаются исходные концентрации этилена, молекулярного хлора и

атомарного хлора; при этом начальные значения концентрации

атомарного хлора находятся через равновесную степень

диссоциации молекулярного хлора в момент времени t = 0.

Необходимые для численного интегрирования значения

констант скоростей реакций, за исключением константы диссоциации

и рекомбинации хлора, вычислялись, как обычно, по известной

формуле
к, = koi exp (-Ег I RT), (13)

где предэкспоненциальные множители koi и энергии активации Ег
были взяты из работ [12, 16, 17], содержащих наиболее полные и

в основном согласующиеся между собой данные. Эти данные

сведены в табл. 1.
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Из-за отсутствия данных для более высоких температур,
указанные значения для констант скоростей были нами

экстраполированы и для 1200° К.

Таблица 1

Значения энергий активации и предэкспоненциальных
множителей элементарных стадий реакции хлорирования этилена

г

1

2

3

4

5

6

7

8

9

liQi, Veen

1,6-101%

7,9-1018

2-ЮИсо

10%

3,2-101%

2,5-10%

2-101%

2,5-101%

7,9-10%

Ej ккал/моль

0

23,6
0

9,1

1,5

1

21,3

3

10,2

г

10

И

12

13

14

17

18

TiQl, Veen

6,3-10%

2.10nC0

2.10Uc0

6,3-1013

1,6-101%

1,3-101%

3,2-101%

Е| , ппал/моль

1

20,6
0

23,8
0

0

3,5

Рассматриваемая схема реакции (11) содержит также реакции

диссоциации и рекомбинации хлора.
Различными авторами в экспериментах на ударных трубах

[18, 19] в интервале 1500—2500° К показано, что

экспериментальные данные по константам диссоциации хлора при соответствующем

выборе а, п, к0 и Е одинаково хорошо описываются двумя
следующими формулами:

а У~Т (D0/RT)nexv (—D0/RT),

(— E/RT),

(14)

(15)

где п — численный параметр. Обычно принимается п ^ 2 [18,
19].

Что касается численного значения энергии активации, то

различные авторы приводят не совпадающие между собой
значения в интервале

— от 40 до 48 ккал/молъ [17—19].

При интегрировании системы уравнений (12) константы

скорости диссоциации и рекомбинации в настоящей работе
вычислялись по следующим формулам [18]:

к1Ъ = 1,1.10е Г/- (D0/RT)* exp l-(D0/RT)],

ки = 3,6.10е (D0/RT)*fll - exp (-813/Г)].

(16)

(17)
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2. Алгоритм решения системы уравнений (12)

Из изложенного выше следует, что константы скоростей
различных стадий рассматриваемой реакции изменяются в широких

пределах (например, при температуре 600° К от 10~8 до 109). Как

указывалось выше (стр. 17), это обстоятельство, типичное для

большинства сложных реакций, создает значительные трудности
с точки зрения численного интегрирования с заданной точностью.

В случае системы (12) компонентами, уравнения для которых

удовлетворяют условиям (4) и (5), являются С2Н4С1, С2Н3С12,
а также при определенных условиях G1 (в наших обозначениях

^4» С8» С2 соответственно).
В диапазоне 600—1200° К концентрации с4 (t) и с8 (t)

достигают своих квазистационарных значений ск (t) = ffeL- (к = 4,8)
соответственно не позднее 10~~4—10~8 сек после начала реакции
и, согласно доказанному выше (стр. 21), эти концентрации в

дальнейшем будут заведомо оставаться в квазистационарном

режиме*. Причем, из системы (12) видно, что сг (0) = 0, с2 (0) <^
< 0, с3 (0) < 0, с4 (0) > 0.

Интегрирование системы (12), как показано выше (стр. 21),
должно производиться в два этапа. Начальное значение шага

интегрирования должно быть заведомо не выше

т. е.

. f 1 1 J_\
mintew' k2' л,.;-

В рассматриваемом случае с4 (t) и cs(t) практически
одновременно выходят на квазистационарный режим, так как bk (t) при
к = 4,8 (нижние оценки которых соответственно равны к2 и к13)
близки между собой. Поскольку cs(t) и с4 (£), согласно (12), не

зависят явно от с4 (t) и с% (t) соответственно, в рассматриваемом

случае с4 (t) и с8 (t) могут быть найдены независимо друг от друга
из уравнений с8 (t) = 0 и с4 (t) = 0. Вместе с тем условие с4 (t) =
= с8 (t) = 0 позволяет привести уравнение для с2 (t) к более

удобному для численного интегрирования виду

с2 (t) = 2 (U15C1C0 — &3С4С2 — kvc\ — к12с8с2 —

где величина коэффициента при с2 значительно уменьшается

сравнению с системой (12).

* Как указывалось, при определенных условиях это справедливо и для С1.
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Как показала проверка, при решении уравнения (4) с помощью

предложенного алгоритма уравнения баланса выполняются с

заданной точностью, определяемой относительной погрешностью ме~

тода интегрирования, в течение всего процесса интегрирования.

Время счета одного варианта методом Рунге — Кутта с

автоматическим выбором шага и относительной погрешностью 10~4 и

10~5 на ЭВМ «Стрела-4» при скорости ^2000 операций в секунду
составляет около 1 часа.

3. Оценка точности результатов

численного интегрирования системы уравнений (12)

Докажем, что в рассматриваемом диапазоне температур (600—
1200° К) алгоритм решения системы (12) обеспечивает абсолютную
точность не ниже 10~6.

Предварительно получим верхнюю оценку величины

концентрации атомарного хлора как функции времени в исследуемом
диапазоне температур. Для этого рассмотрим в системе (12)
уравнение для С1 в виде

с2 (0 = / (*и *2,..., с12) = —

с2 [ft8c4 + kbc7 + (k7 + ks) съ +

+ k12cs + *i4^io + 2 k16c0c2 + кхсг + (ft18 + kn) c9] + c4 {k2 +

+■ &4c6 + к6сг) + cs (k13 + kc>c6 + к1осг) + 2к1ъсгс0. (18)

Найдем такое cl, чтобы при с2 (t) > c\ и любых возможных

значениях остальных концентраций имело бы место

f (си с2,..., с12) <0.

Это означает, что рассматриваемая реакция может идти с

возрастанием концентрации атомарного хлора только при с2 <^ с%.
Как следует из уравнения (18), положительные члены не

зависят явно от с5, с7, с2 и с10. Зафиксируем значения остальных

концентраций и напишем уравнение баланса по С1 в виде

2съ + с7 + Зс9 + с10 = а— 2ег — с2 —с4
—

с6
— 2с8 —2сп—Зс12,

(19)
где

а =2^(0)4-^(0).

Очевидно, что функция / будет принимать наибольшее значение,
если при произвольных фиксированных значениях указанных

концентраций отрицательные члены в уравнении (18) будут
минимальны. Это условие выполняется, если выражение, полученное

из уравнения (18) и представленное с учетом (19) в виде

т (к7 + кв) 2с5 + кис10 + т (kls + кп) Зс9
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минимально. Так как, согласно табл. 1, независимо от

температуры выполняется неравенство

/7 17 \ --о*"* • I 7 -^ / 7 |7\ 7

то, исходя из (19), /?! достигает минимума, если

сь
= с7 = с10 = 0. (20)

Таким образом, условие (20) является необходимым для того,
чтобы функция / достигала максимального значения. При этом

выражение (18) примет вид

к12с8 + 2к16сос2 + (kls + кп) с9 + кгс3] +

к6сг) + с8(к13 + hc6+ к10сг) + 2 к^с^. (21)

Дальнейшее мажорирование с2 (t) будем осуществлять путем
вариации ранее фиксированных сг, с4, с8, сп и с12.

Рассмотрим с учетом выражения (20) члены в формуле (21),
содержащие сгж сб1 при произвольных фиксированных значениях

Сэ, с4, с8, сп, с12, с2. При этом из баланса (19) имеем

2сг + с6 = а - Зс9 — с4
— 2с8 — 2сп - Зс12 - с2. (22)

Следовательно, выражение, входйщее в правую часть (21) и

записанное с учетом (22) в виде

Я2 = св (&4с4 + к2с8) + сг (/с6с4 + к10с8 + 2к1Ъс0),

достигает максимума при с6 = 0, так как к6^>2 &4, к10 ^> 2/с9,
а также, согласно (16), к1Ъ % 0, и, следовательно,

у (кес4 + к10с8 + 2к1Ьс0) >^/с4с4 + hc8.

Отсюда следует, что при выполнении выражения (20) (независимо
от значения остальных концентраций) условие

£6 = 0 (23)

приводит к максимальному для данного состояния системы

значению с2 (t). В результате из формулы (21) получаем

с2 (t) < с4 (к2 + kQc± — к3с2) + с8 (к13 + к1Осг — к12с2) +

+ 2к1Ъс0сг — 2k1Qc0c22 — (kis + кп) с9с2
— кхс2с3. (24)

Очевидно, что при с2 (t) > с2 (0) имеет место
^

к1Ъсг (t) - kl6 c\ (t) < 0, t > 0. (25)

Таким образом, при с2 = с® положительными в правой части

формулы (24) могут быть лишь R3 = к2 + к6сг — к3с® и i?4 =
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= -n-Лз + ^юс1 — &i2c2)« Согласно табл. 1, к2 > /с13, /св ]> /с10,

#3 = ^12 независимо от температуры. Отсюда,'если R3 <^ 0, то

заведомо Д4 << 0 и / (q с20, с3,..., С1г) <С 0. Следовательно,

максимум / возможен при R3 > 0. Тогда i?3 > #4 и £4Д3 + 2с8#4 будет
наибольшим, если при произвольных значениях остальных

концентраций [с учетом уравнений (19), (20) и (23)] принять

cs = 0. (26)
Таким образом, из выражения (24), приняв во внимание (26),
получаем

f (сц с2, с3,..., с12) < с4 (к2 + к6сг — к3с°2) +

+ 2 (/^1 - Keel2) с0
- (Л18 + Ац) с,с2

- кхсгсъ. (27)

Отбрасывая последние члены уравнения (27) [при этом правая
часть (27), согласно (25), заведомо не уменьшается], имеем

окончательно

/(ci, el, c3,... ,с12)<0
при

С2 = тах{с2(0), с2},
где

- /g2 + ha
С2 = г •

При избытке этилена а ^ 1, и так как сг (t) <^ с± (0) <C*f"» то ^2 ^

<^5-10"3, в диапазоне 600—1000° К. Поскольку при этом

степень диссоциации меняется от 10"8 до 2,5-10~3, то с2 > с2 (0),
и искомая оценка имеет вид

c,(0)<Ct(*)<5.10-«. (28)

Полученная оценка (28) достаточно эффективна при высоких

температурах в пределах рассматриваемого диапазона. С

понижением же температуры оценка (28) становится существенно

завышенной, поэтому при 600—800° К (степень диссоциации 10~8 —

10~5) целесообразно использовать следующую оценку. Из
формулы (12) имеем

c2(t)+c\(t)+cs(t) =
=—2 (к3с^с2 + kxlc\ + к12с8с2 + kucQcl + у

Обозначим с2 (t) + c± (t) + cs(t) = ф (t), причем, так как с4 (0)
= с8(0) = 0, имеем ф (0) = с2 (0). Тогда из (29) следует, что q> (t)
^2/с15с1с0 при любых t ^> 0. Отсюда имеем

Ф (t) < 2klbclCot + c2 (0).
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Так как при температурах до 600° К константа скорости
диссоциации к1ъ <^ 1СГ7, а равновесные значения с2 (0) ^ 10~8, то для

времени реакции порядка одной секунды окончательно имеем

(при сх< 1, с0 < 0,05)

Сг (t) + Ч (t) + с% (0 < 2к1ъс0 + с2 (0) ж Ю-8.

Учитывая неотрицательность концентраций, имеем отсюда

сч (t) < Ю-8 (к = 2,4,8). (30)

При 800° К ck (t) <^ 10~6. Очевидно, что при высоких

температурах эта оценка становится более грубой, чем (28).
Проведенная довольно грубая верхняя оценка величины с2 (t)

позволяет оценить величину ck (t) (к = 4,8) в процессе реакции.
Из формулы (4) следует, что ak (t) (к = 4,8) пропорционально с2.
Согласно табл. 1, в диапазоне 600—1200° К константы скоростей,
входящие в ak (£), в безразмерном виде не превышают 109.

Следовательно, при температурах от 600 до 1200° К ah (t) не

превышают соответственно 10 и 5« 10е. При этом Bh (t) (к = 4,8) не ниже

2,5* 105 и 4«109 соответственно.

В результате в рассматриваемом диапазоне температур
верхняя оценка для величины квазистационарных значений химически
активных элементов в процессе реакции имеет вид

6h (t) < Ю-3, О 0, к = 4,8. (31)

Очевидно, что при температурах ниже 1200° К оценка (31)
становится заведомо завышенной.

k*r С помощью полученных результатов найдем количественную
оценку точности предлагаемого алгоритма решения системы (12),
связанного с заменой дифференциальных уравнений для реак-

ционноспособных компонентов (С1, С2Н4С1 и С2Н3С12) при t ^>
^> t0 = 10~"5/ln е| на^соответствующие алгебраические. При этом

будут использованы те же обозначения, что и на стр. 22, где

проведено доказательство оценки точности в общем виде.

Оценим величину Nk (t) [см. формулу (8), § 1]. Из системы (12)
видно, что единственным членом первого порядка, не содержащим

си (0 (& — 2, 4, 8) является к1Ьсхсъ. Этот член, характеризующий
диссоциацию хлора, в диапазоне 600—1200° К не превышает

2,5Л0~3 и заведомо мал по сравнению с i?ft>105. В остальные члены

первого порядка входят только концентрации реакционноспособ-
ных компонентов с4 и съ. Вместе с тем в членах второго порядка
по крайней мере одна из концентраций совпадает с с2, с4 или с8.
Таким образом, bj (t), / = 1, 2,..., 12, согласно оценкам (28) и

(31) по крайней мере на три порядка меньше максимальной из

констант скоростей, входящих в положительные слагаемые правых
частей соответствующих уравнений. При этом производные

концентраций реакционноспособных компонентов после выхода на
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квазистационарный режим заведомо малы. Указанное

обстоятельство позволяет получить оценки для величин dh (t), bk (t) (к =

= 4,8), а также d2 (t), b2(t) при избытке этилена и ty>t0.
Действительно, ak (t) (где к = 2, 4, 8) состоит из конечной суммы членов

вида k{dj и кг (стсп + спст), получаемых дифференцированием
соответственно членов первого и второго порядков. Очевидно, что

первые из указанных членов малы, так как соответствующие
компоненты реакционноспособны.

Допустим, что сп обладает малой реакционноспособностью
(тогда ст заведомо реакционноспособно). Отсюда в худшем с точки

зрения оценки случае (при Т = 1200° К) получим к{ (стсп +
+ спст) < 10~6 кгкп где кг — максимальная из констант

скоростей, входящих в правую часть cn(t). Если сп и ст реакционно-

способны, то соответствующий член будет заведомо меньше. В

результате имеем

ч (0 < ю«.

Аналогично, поскольку hh (t) состоит из слагаемых вида кгср (t),
где ср может обладать малой реакционноспособностью, имеем

Отсюда в худшем случае получим

<юз,h(t) vH

так как при температуре 1200° К

ък (0 > ю».

При Г>г0 ошибка при замене концентраций указанных
компонентов их квазистационарными значениями удовлетворяет условию

zk (t) < max {6, Rh}, (32)

где Rh <^10"6 при 1200° К. Как следует из (30), при более низких

температурах Rk еще меньше.

Таким образом, предлагаемый алгоритм решения системы

дифференциальных уравнений (12), которые описывают кинетику

хлорирования этилена, обеспечивает получение решения с

достаточной для практических целей точностью.

4. Обсуждение результатов
численного интегрирования системы уравнений (12)

Было проведено численное интегрирование системы (12) при
различных начальных соотношениях концентраций хлора и

этилена в диапазоне 600—1200° К. Для оценки влияния на решение
системы (12) изменения констант скоростей к13 и &15, изменения
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,
объеин. дола

Oj, объемн. доли

1

tCBK tCEH

Рис. 1. Зависимость концентраций cj различных компонентов реакции

хлорирования этилена от времени

а
— без учета и б — с учетом реакций 17, 18 в схеме (И).

Начальное соотношение С12: С2Н4 = 0,3 : 0,7; Т = 1200°К. 1—10 [С12]; 3 — 10 [С2Н41;
5—10 [С2Н4С12]; 8—10* [С2Н3С12]; 9— [С2Н3С13]; 10—10[С2Н3С1].
На рис.1—Зи5—9 цифры на кривых соответствуют номерам компонентов (стр.26)

схемы реакций (11) путем исключения отдельных стадий [в
частности, реакций 17 и 18 в схеме (11)] были проведены
соответствующие математические эксперименты на ЭВМ.

На рис. 1, а, б в полулогарифмическом масштабе
представлены результаты численного интегрирования системы (12)
соответственно без учета реакций 17 и 18 в схеме реакций (11) и полной

системы двенадцати дифференциальных уравнений (12).
Проведенные расчеты показали, что исключение реакций 17 и 18 из схемы

(11) незначительно повлияло на зависимости от времени

концентраций большинства компонентов, участвующих в реакции; в

несколько большей мере это сказалось на концентрациях

компонентов, которые непосредственно связаны с реакциями 17 и 18.

Для исследования влияния начального соотношения

концентраций на кинетику хлорирования этилена было проведено
численное интегрирование системы уравнений (12) при различных
отношениях хлора к этилену (рис. 2). j

Нами рассматривались случаи избытка хлора* или этилена,

а также промежуточный случай. На практике хлорирование этиле-

* Конечно, такие концентрации СЬ рассмотрены лишь для выяснения

основных тенденций процесса; практически при таких концентрациях

имеют место явления взрывного характера.
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на обычно проводится в

избытке этилена для того,

чтобы поддержать изотермич-
ность и избежать очистки

продуктов реакции от

свободного хлора.
Как видно из рис. 2, в

случае С12 : С2Н4 = 0,3 : 0,7
при времени около 1 сек хлор

практически израсходован,

при этом концентрации

винилхлорида и этилена далее

не изменяются. Очевидно,
что выход на асимптоту

концентраций этилена,

винилхлорида и ряда других
компонентов является результатом

того, что израсходован хлор.

Для исключения этого

фактора просчитан вариант для

отношения С12 : С2Н4 = 0,7 :

: 0,3. Как видно из рис. 2,
кинетика процесса в этом

случае резко отличается от

предыдущего: концентрация

винилхлорида достигает
максимального значения, после

чего происходит интенсивное

его разложение. К моменту
достижения максимума
концентрации винилхлорида
этилена остается ~0,06, хлора

-^0,40 (концентрации веществ
приводятся в объемных

долях).
Таким образом, в случае

С12 : С2Н4 = 0,7 : 0,3, как и

следовало ожидать, процесс
идет в сторону более

глубокого хлорирования, чем в

случае С12 : С2Н4 = 0,3 : 0,7,
выход винилхлорида

уменьшается, а концентрация НС1

продолжает расти даже после

того, как концентрация

винилхлорида достигла

максимума. Был просчитан также

j, объемн. доли

Рис. 2. Зависимость концентраций
хлора, этилена и винилхлорида от

времени при 1200°К и различных

начальных соотношениях

концентраций
С12 : С2Н4 = 0,3 : 0,7 (сплошные кривые);
С12 : С2Н4 = 0,5 : 0,5 (штрих-пунктирные
кривые); С12 : С2Н4=0,7 : 0,3 (пунктирные
кривые). 1 — С12; 3 — СаН4; 10 — С2Н3С1

[С2Н3С1], объемн. доли

Рис. 3. Зависимость выхода винил-

хтсрида от значений К13/К13
Т = 600°К; С1а : С2Н4 =1:10
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промежуточный случай С12 : С2Н4 = 0,5 : 0,5. Как видно из

рис. 2, концентрация винилхлорида достигает максимального
значения —0,25, и далее он практически не разлагается.

Был исследован вопрос о влиянии константы скорости
реакции 13, которая в рамках выбранной схемы является единственной
реакцией, ведущей к образованию винилхлорида. С этой целью
система (12) была численно проинтегрирована при Т = 600° К,
начальном соотношении С12 : С2Н4 = 1 : 10 и значениях к13*

объемн доли

Рис. 4. Кривые расхода
хлора при Е

— 41 (2)
и Е = 38 ккал/молъ (2)

t, сек

увеличенных в 10 и 100 раз по сравнению со значением к13,
соответствующим 600° К.

На рис. 3 представлен выход винилхлорида к моменту

времени t — 0,3 сек в зависимости от значения к13/г€гз. Из этого

рисунка легко видеть, что дальнейшее увеличение этой константы

не приводит к существенному возрастанию выхода винилхлорида.
В связи с высокой чувствительностью процесса к изменению

константы скорости диссоциации был исследован вопрос о влиянии

изменения величины этой константы. Точных измерений этой
константы нет, кроме того, надо учитывать возможность
значительного влияния стенок на ее величину. Поэтому были проведены
расчеты при различных значениях энергии активации диссоциации
и константы скорости диссоциации.

На рис. 4 представлены кривые расхода хлора при 600° К

и соотношении начальных концентраций С12 : С2Н4 = 1 : 50,
причем константа к1Ъ вычислена по формуле Аррениуса [а не по

формуле (16)]; для энергии активации диссоциации были взяты

значения 38 и 41 ккал/молъ [20]. При энергии активации 38 ккал/
/моль за время 10"1 сек осталось 81% хлора от исходного

количества, а при энергии активации 41 ккал/молъ за то же время
осталось 92.5% хлора.

По данным работы [21], при 593° К и скорости подачи
исходной смеси 0,323 молъ/л*сек, что соответствует времени реакции

8-10"2 сек, осталось 84,5% от исходного количества хлора, что

находится в удовлетворительном согласии с расчетом. В то же

время выход винилхлорида, полученный в результате расчета,
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при прочих равных условиях значительно меньше полученного

экспериментально теми же авторами. По-видимому, это связано

с тем, что в рассматриваемой нами схеме имеется единственный
канал для образования винилхлорида [реакция 13 в схеме (11)1,
которого недостаточно для описания рассматриваемого процесса.

Действительно, как было показано выше, даже увеличение

константы этой реакции (к13) не может обеспечить выход

винилхлорида, сравнимый с получаемым экспериментально.
Этот важный результат, полученный с помощью численного

расчета, подтверждает известное предположение о том, что

образование винилхлорида идет одновременно по двум каналам (9,10).
Другими словами, образование какой-то части винилхлорида
связано с реакцией непосредственного замещения (10), учет которой
в настоящее время невозможен из-за отсутствия данных о

константах. Таким образом, вопрос о соотношении реакций
присоединения и замещения при хлорировании этилена в различных

интервалах температур нуждается в дополнительном исследовании.

Имеется еще ряд экспериментальных результатов
качественного характера [21], совпадающих с результатами расчетов.

1) В условиях описанных в работе [21] опытов НС1 и С2Н3С1
образуются в эквимолекулярных количествах. Такой же вывод

следует из проведенных расчетов (см., например, рис. 1, а).
2) Процесс замещения имеет некоторый период индукции,

уменьшающийся с ростом температуры. Подобная температурная
зависимость для периода индукции получена и в результате

расчета (см. рис. 1, а, б).
3) С увеличением времени пребывания выход продуктов

присоединения проходит через максимум и затем падает при

продолжающемся развитии процессов замещения. Такое же поведение

концентраций продуктов присоединения и замещения найдено
путем расчета (см. рис. 1, а, б).

4) В изученном интервале 600—660° К с ростом температуры

выход продуктов замещения непрерывно увеличивается, выход

продуктов присоединения при этом снижается; результаты
расчетов в интервале 600—1200° К также показали, что выход

продуктов замещения с повышением температуры возрастает, а

присоединения снижается (см. рис. 1, а, б).
5) В отличие от выводов работы [2] повышение содержания

хлора в исходной смеси благоприятствует не протеканию
процесса замещения, а только образованию НС1 и продуктов глубокого
хлорирования. К аналогичному выводу приводят и проведенные
расчеты (см. рис. 2).

На рис. 5 представлены кривые, полученные для температур
600 и 800° К при отношении С12 : С2Н4 = 1 : 10 для константы

диссоциации хлора, увеличенной по сравнению с вычисленной по

формуле (16) в 1000 раз, что соответствует энергии активации при
600° К — 39,7 ккал/молъ, а при 800° К — 37 ккал/молъ.
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Рис. 5. Зависимость концентраций хлора, этилена й дихлорэтана

от времени при /с = 1000 к15
Т = 600° (сплошные линии) и Т = 800°К (пунктирные линии),
i — [С12]; 3—Ю-1 [С2Д4]; 5 — [С,Н4С12]; if? — [С2Н3С1]

Были проведены расчеты, в которых изменялись либо только

/с15, а все остальные кг оставались неизменными, либо изменялись

все к{, а к1Ъ оставалось неизменной.

Эти расчеты были выполнены при одном и том же начальном

соотношении С1 : С2Н4 = 1 : 10 для следующих случаев: 1) все

константы (включая и к1Ъ) вычислены для 600° К; 2) к1Ъ вычислено

для 600° К, а все остальные константы вычислены для 800° К и

3) все константы скоростей вычислены для 800° К. При этом

оказалось, что время расходования хлора резко убывает с ростом
константы скорости диссоциации хлора. Так, например, для
расхода хлора на 15% время в первом и втором случае —10"1 сек,
а в третьем —10~8 сек.

Таким образом, на процесс хлорирования этилена по схеме

(11) наибольшее влияние оказывает значение константы скорости

диссоциации хлора. Поэтому даже относительно небольшой

разброс в значениях энергии активации и предэкспоненциального
множителя константы скорости диссоциации хлора может

существенно исказить результаты кинетических расчетов, в то время

как такой разброс в значениях остальных констант скоростей, по-

видимому, такого влияния не оказывает. В силу этого желательно

возможно более точное экспериментальное определение константы

к1Ь и изучение влияния на ее значение условий эксперимента
(отношение поверхности к объему, характер стенок реактора и т.п.*).

* Авторы благодарят В. Я. Штерна, А. Ф. Ревзина, Г. В. Гуляева,
А. И. Субботина и Ю. А. Трегера за полезное обсуждение.
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§ 3. Расчет кинетики окисления метана

и сопоставление результатов решения
с экспериментальными данными

Реакция окисления метана может считаться моделью

широкого класса сложных цепных процессов окисления

углеводородов [22].
Наиболее ценными продуктами окисления метана являются

формальдегид, если окисление проводится при давлениях, не

превышающих атмосферного, и метанол, если реакция происходит

при высоких давлениях (—100 атм). При этом формальдегид
и метанол являются промежуточными продуктами реакции
окисления, ибо конечными продуктами этой реакции, как известно,

являются углекислый газ и вода.

В многочисленных работах, посвященных изучению

процесса окисления метана, достигнуты сравнительно небольшие

выходы формальдегида при однократном пропускании сырья через

реактор [23—28]. Известно, что при относительно низкой

температуре проведения этой реакции и малом времени контакта

метан окисляется практически только в формальдегид. Однако
в этих условиях количество окисляющегося метана мало и,

следовательно, мал абсолютный выход формальдегида 124].
Повышение температуры или увеличение времени контакта приводят к

увеличению количества окислившегося метана, но не к

увеличению выхода формальдегида, который сам в этих условиях легко

окисляется.

В настоящее время наилучшие результаты по получению

формальдегида прямым окислением метана (природного газа)
кислородом воздуха дает способ, предложенный в работе [25].
В основу этого способа положено ускоряющее действие тетра-
бората калия на реакцию окисления метана и тормозящее
действие введенной в реактор насадки на реакцию окисления

формальдегида. При этом в реакционную смесь добавляются нитроз-
ные газы, являющиеся катализатором реакции окисления метана.

Реакционная смесь состоит из -—33% метана и —67% воздуха;
температура проведения процесса ~1000° К; время пребывания
смеси в реакторе тКОнт ~0,14—0,16 сек; концентрация окислов

азота —0,16 объемн. %.
Выход формальдегида при однократном пропускании через

реактор составляет 2,4—2,6 объемн. % к метану, а при
6-кратной циркуляции —10,6 объемн. %.

Попытки рассчитать кинетику этой интересной реакции
предпринимались в работе [3] при решении задачи одномерного
горения метана на основе предложенного в [3] метода линеаризации
системы уравнений, описывающих окисление метана. Очевидно,
что без получения оценки точности решения при линеаризации
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системы уравнений этот метод не может быть применен (см.
стр. 16). Используя метод, развитый выше (стр. 20), нами

решена на ЭВМ система дифференциальных уравнений,
описывающих процесс окисления метана.

1, Постановка заданы и методика счета

Отыскивается численное решение системы дифференциальных
уравнений, описывающих кинетику реакции газофазного
изотермического окисления метана по механизму, который
рассматривается ниже. Используемый здесь алгоритм численного

интегрирования с заданной степенью точности, который разработан для
сложных химических реакций при любых соотношениях констант

скоростей, входящих в систему уравнений кинетики, подробно
изложен на стр. 12—24.

Принятая в настоящей работе химическая модель процесса

окисления метана (табл. 2)* основана на предложенной Н. Н.
Семеновым радикально-цепной схеме процесса окисления метана.

Как видно, реакция 1 есть реакция зарождения цепи, реакции

2—5,7—12 — продолжение цепи, реакция 6 — разветвление
цепи, реакции 13—17 — обрыва в объеме (в том числе реакции 13
и 14 — квадратичного обрыва). В этой же таблице приведены
значения соответствующих констант скоростей реакции.
Большинство приведенных значений констант определено в температурном

интервале, не превышакЛцем ~1000° К; для всех рекомбинацион-
ных обрывов приняты обычные значения.

Применяя метод квазистационарных концентраций, из схемы,

в основном совпадающей с этой, можно вывести выражения для

изменения во времени концентрации формальдегида и скорости

реакции [22]. Это позволяет установить, что максимальная

концентрация формальдегида зависит только от температуры и

определяется следующим соотношением:

[НСНО]тах = ехр (-8500//?Т) [CHJ, (33)

которое близко к полученному экспериментально в работе [29]

[НСНО]тах ~ ехр (-10000/ДГ) [CHJ. (34)

Необходимо отметить, что это соотношение получено для

случая, когда промежуточный продукт образуется и расходуется

цепным путем. Следует указать также, что экспериментальные

результаты, подтверждающие справедливость соотношения (34),
получены при температурах не выше 900° К [30].

* Приведенный механизм подробно обсужден авторами с А. Б. Налбан-

дяном, В. Азатяном, В. И. Веденеевым, С. С. Поляк, которым мы

выражаем глубокую признат ельность.
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Таблица 2

Механизм окисления метана

п.п

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

СНз |

СН3О(

СН4 4

СН2О

СН2О

НСО-

СН44

СН2О

СН44

СН2О

ОН 4

Н + ]

СНзЧ

Реакция

О2-> СНз -f НО2

- о2-4сн3оо
к-А

к*
- ОН-> СН3+ Н2О

+ ОН-^Н2О+НСО
к,

f 02->?С0 + НО2

ТТЛ ТТ (~\ \ ft ТТ
- liU2—> Г12^2 ~\~ v^n.3

+ НО2^Н2О2-| НСО

f*\ гт_ С^О [ о

fclt
ТТ

piT f ТТ

+ Н~* НСО + Н2
к1Я

ки
l Н02-> Н2О2 f 02

ft»
Н02-> Н2О -f Ог

io2ieH2 4- о2
кп

Константа спорости
*

1011 ехр (—55000/RТ)

108

1013 ехр (—20000/RT)

1011 ехр (—8500/RТ)

1012 ехр (--6300/ВТ)

10" ехр (—32000/Л7)

Ю8

10"ехр(-19750//?Т)

Юн ехр (_8500/RT)

\0и ехр (—1000/RT)

1,5.1010ехр(—11200/ЛГ)

4 -Ю8 ехр (—2000/RТ)

10Ю

10Ю

101°

Ю1»

* Все константы, за исключением

"кг — имеет размерность сек-1.

имеют размерности л, аьоль-сек;

При расчетах нами рассматривались пятнадцать

компонентов, для концентраций которых были приняты следующие
обозначения:

Соединение СН4 О2 СН8 НО2 СН3ОО СН2О ОН

Концентрация с\ с2 сз с4 с# сб с^

Соединение Н2О НСО СО Н2О2 Н2 СО2 Н С2Н6

Концентрация с8 с9 ci0 сц С12 cjs сц слъ

U



В соответствии с выбранной химической моделью была

составлена система пятнадцати нелинейных обыкновенных

дифференциальных уравнений (35):

-£f = — кхсхс2 — клс±с7 — kBcxcA —

-il = _ AlClra — &2сас3 — квс2с6 —-i

к2с2с3 — 2/с13с2 — А:17с3с4

кпсгси

— /cec2c6 — fcbc4c6 — k12c6cu + ksc5

— kbc&c7 — k1Qc7c10 —

/cfic4c6

^2. = кпсгси

dt

dcu

kl0c7c10

(35)

В случае, если реакция протекает в потоке, к системе

дифференциальных уравнений (35) следует добавить уравнения
гидродинамики и решать такую систему совместно, как это сделано,

например, в работе [15]. Если представить каждое из уравнений

рассматриваемой системы в виде
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то как указывалось на стр. 17, при условии

где т0 — время реакции, а 8 — заданная точность, некоторые

компоненты за короткое по сравнению с временем реакции время

выйдут на так называемый квазистационарный режим. Для
рассматриваемой реакции окисления метана такими компонентами

являются сь (так как, например, при 1000° К а\ = 0,454.109),
а также при определенных условиях с7 и с9 (в частности, если сх
и с2 достаточно велики в начале реакции). При этом съ заведомо

выходит на квазистационарный режим при времени порядка 10~6,
тогда как с1 и с9 [если выполнены условия относительно с± (0) и

с2 (0)] на один-два порядка позже. Как указано выше (стр. 20),
решение рассматриваемой системы обычными методами
численного интегрирования практически невозможно, так как

указанные уравнения при выходе соответствующих концентраций на

квазистационарный режим дают при численном интегрировании

осциллирующие неустойчивые решения. Иепользуемый нами

алгоритм (стр. 20) позволяет полностью снять указанные трудности.
Существенно, что в рассматриваемом случае уравнения для

определения с5, с7 и с9 независимы, что значительно упрощает
счет. Отличие концентрации с5 от своего квазистационарного

значения становится пренебрежимо малым при t ^> -j^ • Вместе

с тем, поскольку с7 и с9 участвуют в реакциях второго порядка

(и, следовательно, а* может уменьшаться в зависимости от

скорости разложения сь с6, с10, с4; а* — в зависимости от скорости

разложения с2), они с течением времени могут выйти из

квазистационарного режима. В связи с этим для обеспечения
заданной точности в процессе счета необходимо проверять выполнение

условия квазистационарности для с7 и с9.

Численное интегрирование рассматриваемой системы

осуществлялось методом Рунге — Кутта с автоматическим выбором
шага и относительной погрешностью 10~4—10~б. В качестве
начальных условий рассматриваемой системы дифференциальных
уравнений (35) задаются исходные концентрации метана и кислорода

(С/ : С2° = 0,29 : 0,71).

2. Обсуждение результатов
численного интегрирования системы (S5)
и сопоставление их с экспериментальными данными

а) Зависимость cj = Cj (Г), cj = cs (t), dcj/dt = / (t).
Численное интегрирование системы (35) проводилось для

диапазона 800—1700° К. В результате для различных температур
в указанном диапазоне получены зависимости концентраций от
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яремени для всех веществ, участвующих в реакции, а также

кривые скоростей их расхода и образования. Найденные отсюда в

момент времени iO~4 сек зависимости всех концентраций от

температуры приведены на рис. 6, а, б. Кроме того, с целью
выяснения влияния обрывов (см. реакции 13—17, табл. 2) на

рассматриваемый процесс при тех же условиях были проведены расчеты для
системы реакций 1 —12.

На рис. 7, я, б и 8, а, б представлены в полулогарифмическом
масштабе результаты расчетов при 1300° К соответственно для

случая укороченной (без учета обрывов) и полной системы реакций

(см. табл. 2), а на рис. 9, а, б такие же кривые для 800° К для
полной системы реакций.

Как следует из рассмотрения рис. 7, а, б, кривые
концентраций О2, НО2, Н2О2, Н, Н2О, Н2, СО2 при времени порядка 10~3 сек

достигают насыщения. В случае же, когда рассматривается
полная система реакций (см. рис. 8, я, б), как и следовало ожидать,

кривые концентраций радикалов (таких, как НО2, Н) проходят

через максимум, тогда как концентрации Н2О, Н2О2, Н2 и другие

(которые являются продуктами реакций обрывов) продолжают
расти. При тех же температурах для системы реакций 1—12
(см. табл. 2) были проведены расчеты при уменьшении константы

к3 в 1000 раз, что соответствует увеличению энергии активации,

например при 1000° К на 14 ккал, а при 1300° К почти на 18 ккал.

При этом оказывается, что такое уменьшение к3 практически на

процесс не влияет. Это обстоятельство согласуется с утверждением
Н. Н. Семенова о том, что процесс образования формальдегида
определяется реакцией

СН3 + О2 -+ СН2О + ОН,

так как реакция 3 достаточно быстро следует за реакцией 2 (см.
табл. 2) [31].

Как и следовало ожидать, с повышением температуры
кривые, сохраняя подобие, смещаются («сжимаются»и «растягиваются»)
по оси времен (см. рис. 8, а, б и 9, я, б).

На рис. 10 и 11 показана зависимость расхода СН4 и О2 от

времени при 1000 и 1500° К. Для сравнения на этих рисунках

нанесены соответствующие этим температурам кривые
зависимости концентрации формальдегида от времени. Из рассмотрения

рис. 10 и 11 видно, что с повышением температуры максимумы

кривых расхода СН4 и О2 сближаются с максимумом
концентрации СН2О.

На рис. 12 приведена зависимость скорости образования
СН2О от времени при различных температурах. С возрастанием

температуры кривые смещаются в сторону меньших времен,
максимальные значения их растут, а форма не изменяется.

Для изучения изменения механизма реакции окисления

метана в рассматриваемом диапазоне температур была вычислена
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Рис. 6. Зависимость концентраций веществ, принимающих участие в

процессе окисления метана, от температуры

а) 1 — [CHJ; 2 — [О,]; 6 — 102[СН2О]; 8—10 [Н2О]; 10—10 [СО]; 12-iO2 [H2]; i3-102

[СО2].
б) 3—102 [СН3]; 4-Ю3 [НО2]; 5—107 [СН3ОО]; 7—104 [ОН]; Р—102 [НСО]; 11—10 [Н2О2];
14— 104[Н]; 15—102 [С2Н«]
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Рис. 7. Зависимость концентраций от времени для системы реакций 1 —12
из табл. 1 (без реакции обрыва)

а) 1 - [CHJ; 2 — [О2]; з—102 [СН31; 4—Ю2 [НО2]; б—102 [СН2О]; 7—104[ОН];11—
[Н2О2].
б) 5—10» [СН3ОО]; 8 — [Н2О]; Р—102 [НСО]; 10 — [СО]; 12 — [Н2]; 13 — [COJ;
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Рис. 8. Зависимость концентраций от времени для полной системы реакции
1—17 из табл. 2 (с реакциями обрыва)

а) 1 — [CHJ; 2 — [О21; 5—103 [СН3]; 5—107 [СН3ОО]; 8 — [Н2О]; J<? — [СО]; 15—iO2

[C2HeL
6)4— Ю3 [НО2]; в—102 [СН2О]; 7—105 [ОН]; 9—103 [НСО]; JJ — [Н2О2];/2—10 [Н2];
J3—1 ([COJ; 14—10* [Н]

0j, объемн дот
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Рис. 9. Зависимость концентраций от времени для полной системы реакций

а) 1 — [GHJ; 2 — [О2]; 3 —107 [СН3]; tf — 105 [НО2]; Р—107 [НСО]; 14—10 [н];

i5—107 [C2.He]

б) 5—108 [СН3ОО]; б—102 [СН2О]; 7—107 [ОН]; 5—102 [Н2О]; J<?—102 [СО]; 11—

102[Н2О2]; 12—104[СО2]; 23—10* [Н2]



длина цепи. Численные значения для расчета были взяты в

точках, в которых концентрация формальдегида составляла 90%
его максимальной концентрации.

Результаты расчета представлены ниже:

7\ °К

v (длина цепи) . .

1000 1300 1500 1700

120 77 17 0,41

Отсюда видно, что цепной механизм окисления метана имеет

место лишь до температур —1600—1700° К, при которых уже
недействительно и уравнение (33), получаемое на основе цепной
схемы этой реакции. В нашем распоряжении нет каких-либо

dt
'

dt

Рис. 10. Зависимость
скорости расхода метана (2),
кислорода (2) и концентрации
формальдегида (3) от времени
при 1000°К для полной
системы реакций

Ю tt сек

данных о том, каков механизм окисления метана при более
высокой температуре; можно предположить с известной долей
вероятности, что он будет свободно-радикальным.

б) Энергия активации окисления метана.

Как известно, с повышением температуры энергия активации
окисления метана уменьшается. Соответствующие данные

приведены в табл. 3, в которой указаны также условия эксперимента,

так как найденные числовые значения энергии активации зависят

и от состояния поверхности реакционного сосуда и от состава

смеси.

При всей сложности картины видно, что с повышением

температуры (по-видимому, и с повышением давления) энергия
активации окисления метана уменьшается.

Некоторые соображения по этому поводу приведены в

работе [22]. Во всяком случае, указанная тенденция отчетливо

заметна во всех экспериментах.
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Рис. 11. Зависимость скорости расхода метана (2), кислорода

(2) и концентрации формальдегида (3) от времени при 150СГК

W

Рис. 12. Зависимость скорости образования
формальдегида от времени при различных температурах

! _ т = 1500*К; А = 10-'; 2 — Т = 1300вК;А = Ю-2; 3 — т =

= 1000#К, А = Ю-1; 4 — Т = 800*К, А = 10



Т а блица 3

Зависимость энергии активации от условий эксперимента

Интервал

температур, °К

748—798

773—798

748—798

898—948

873—948

848-935,5

873—948

873-935,5

1050—
2100

1420—
2000

1100—
ZUUU

700—1700

Ус

р, атм

0,4

0,4

0,2

0,66

0,066

0,13

0,4

0,2

0,3

3</><9

4, ^P^J
ч71

овия эксперимента

Соста

смеси

2СН4 + О2

2CIU + O.

СН4+2О2

СН4+2О2

СН4+О2

2СН4+ЗО2

2СН4+ЗО2

2СН4 -f O2

2СН4+ЗО2

70%Аг +
9%СН4 +
21% О2

70% Аг +
18%СН4 +
12% О2
Более 54%
метана в
мета но-кисло-
родной смеси

Менее 50%
метана в ме-
тано-кисло-

родной смеси

Примечание

Сосуд
обработан HP

Сосуд
«старый»

Сосуд
обработан HF

Сосуд
«старый»

Сосуд
обработан HF

Сосуд прогрет

Сосуд покрыт
РЬО

Сосуд прогрет

Сосуд покрыт
РЬО

£*, ккал/моль

40 (748)-
25 (773—798)
65(748)—50(798)

32 (773)—25 (798)

96 (748)—65 (798)

43

78

57—48

57

70—55

21,5—33,8

49,5

52,9

20,6

Литература

ч

[22,
та6wi. 46]

ч

1

1 [22,
табл. 47]

[32]

[32]

[33]

[33]

* В скобках указаны температуры, для которых получены значения энергии
активации

Рассмотрим в этой связи энергии активации окисления метана,

приведенные в табл. 4, которые определены из зависимостей

In

In

In

In

dt

d[O2]

(1),

dt

d [GO]
dt

dt
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Из рассмотрения табл. 4 видно, что отмеченная в

экспериментах, приведенных в табл. 3, тенденция понижения энергии

активации окисления метана при повышении температуры вытекает

из механизма табл. 2, так как данные табл. 4 являются

математическим следствием из расчета этого механизма.

Таблица 4

Различные значения энергии активации окисления

метана

Интервал
температур,

1200—1300

1300—1400

1500—1600

Е, ккал/моль

1

25,0
25,0
18,6

2

24,2
23,62
18,6

3

30,0
26,6
18,2

4

32,8
28,0
17,0

Значения энергии активации, рассчитанные разными
способами, хорошо совпадают между собой, за исключением значений,
определенных по расходу СН4 и О2, с одной стороны, и значений,
определенных по образованию СО и Н2О, с другой, в интервале
1200—1300° К. Причина этого расхождения не ясна, хотя

аналогичная ситуация отмечалась и в некоторых экспериментальных

работах [32].
в) Сопоставление результатов расчета с экспериментальными

данными.

Экспериментальное исследование окисления метана в

интервале — 1200—2700° К проведено в плазменной струе аргона [34,
35]. Сопоставим эти экспериментальные данные с результатами

расчета. Прежде всего надо заметить, что результаты опытов в

стационарной плазменной струе при атмосферном давлении для

различных химических реакций хорошо совпадают с данными,

полученными в статических условиях [36]. Ошибка измерения
температуры в работах [34, 35] составляла +10—12%, что не

превышает обычных ошибок в исследованном интервале температур,
ошибка измерения концентрации большинства газов составляла

+ 5%, а определения [СН2О] — + 20%.
Из рассмотрения рис. 13 видно следующее:
1. Экспериментальные точки в интервале расчета (800—

1700° К) удовлетворительно совпадают с расчетными кривыми.
2. Как расчетная кривая, так и экспериментальные данные

по образованию формальдегида проходят через максимум в

области—1500—1600° К. Таким образом, этот важный результат
расчета полностью подтверждается экспериментом. Необходимо

отметить, что этот максимум определяет ранее неизвестную границу
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применимости уравнения (33). Вопрос о том, связана ли эта

граница с изменением механизма реакции, или с какой-либо иной

причиной, остается открытым.

3. Обращает на себя внимание то обстоятельство, что выход

СН2О (кривая 2) до максимума растет значительно быстрее, чем

падает после него. Это хорошо видно из рассмотрения

экспериментальных данных и заметно (хотя участок расчетной кривой за

максимумом мал) на расчетной кривой.

[СИ2О]
Щ

ю~

ю~

2,4 l°W3 °H

Рис. 13/ Сравнение расчетных кривых с экспериментальными данными
Глтг I

77Ъг
ILttUl

Глтг I
ГРТТ О1

1 77Ъгт(О—экспериментальные точки); 2—
2

(П — экспериментальные точки);

ЮХ(Х—экспериментальные точки)

Сопоставим теперь расчетные данные, приведенные в табл. 4,
с результатом вычисления энергии активации по

экспериментальным данным работы [35] для давления р
= 1 атом (табл. 5).

Если учесть неточности эксперимента и исходных данных для

расчета, то такое совпадение вычисленных и экспериментальных

значений энергии активации нельзя не признать хорошим.

Таким образом, экспериментальные данные и расчет по механизму
табл. 2 согласованно показывают, что, как это отмечено ранее
многими исследователями, с ростом температуры энергия активации
окисления метана падает.

В заключение приведем одно замечание в духе развитого на

стр. 111—137 представления об отыскании с помощью ЭВМ
наиболее вероятного механизма той или иной реакции. Для расчета
механизма реакции окисления метана, приведенного в табл. 2,
имеем хорошую аппроксимацию экспериментальных точек,

отсутствие влияния К3 на процесс окисления, выполнение в

определенных пределах уравнения (34), совпадение с опытом

вычисленных значений энергии активации и выполнение найденной
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Таблица 5

Значения энергии активации, определенные по расходованию
СН4 (/), О2 (2) и образованию СО (3)

Интервал
T'jMiiepa-
тур, °К

1200-1300

1500—1600

Е, ккал/моль

1

вычисл.

25-Ю8

18,6-10*

эксперим.

(29,6i6)-103

(19,04-3,3)-10'

2

ВЫЧИСЛ.

2'1,2-Ю1

18,6-10:$

эксперим.

(18,3^3,9). 10'

(10,64:2,1) Ю*

3

вычисл

30,0-10»

18,2-103

эксперим.

(28,5±4,8).10я

(18,0^3,1

в опыте тенденции понижения энергии активации с повышением

температуры. Хотя нами и не рассмотрены другие возможные

механизмы окисления метана (это не являлось задачей настоящей
работы), но перечисленные результаты, которые не были
заложены заранее в программу расчетов, показывают, что механизм

табл. 2 является по крайней мере одним из правильно
отражающих совокупность и стадийную последовательность реакций
реального процесса окисления метана.

§ 4. Влияние начальных условий
на решение системы уравнений химической кинетики
и гидродинамики

(на примере реакции пиролиза метана в потоке)

Исследование химических процессов (особенно
неизотермических реакций в потоке, что является наиболее
распространенным случаем химической технологии) требует выяснения

влияния изменения начальных условий (температура, соотношение

концентраций и т. п.) на решение системы дифференциальных
уравнений, представляющих собой математическую модель
процесса. В данном разделе на примере реакции пиролиза метана в

плазменной струе проведено такое исследование с помощью

численного решения на электронной цифровой вычислительной
машине*. В работе [15] на математической модели плазмохимического

процесса конверсии метана в ацетилен было изучено влияние

начальной температуры Т (0), начальной скорости v (0) плазменной

струи и начальной концентрации метана сх (0) на максимум

концентрации ацетилена с3 (zm), длину реактора L и другие величины.

При этом было отмечено, что зависимость величин с3 (zm), L и

* В приложении (стр. 232) рассмотрен вопрос о применении электронных
аналоговых машин к задачам такого типа.
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других от начальных условий позволяет поставить вопрос об

оптимальном управлении плазмохимическим процессом путем

соответствующего изменения этих условий.
Плазмохимический реактор рассматривается нами как объект

автоматического управления. Известно, что для описания объекта
автоматического управления необходимо установить связи между

его выходами и входами. Эти связи для плазмохимического

реактора можно выявить, воспользовавшись математической моделью

процесса конверсии метана в ацетилен, полученной в работе [15].
В этой работе была рассмотрена следующая система
обыкновенных нелинейных дифференциальных уравнений первого порядка,

которая в определенных приближениях моделирует
плазмохимический процесс конверсии метана в ацетилен в водородной
плазменной струе:

dz

1

АГ
5 ,~,

АГ ] v-i da(z)
t,-2v w] S -j^*i

rfz

М-24=)
~ аи a

г>(г)

, (36)

где

(iV и M — константы, определяемые из начальных условий).
Численное интегрирование на ЭВМ системы уравнений (36)

при заданной совокупности констант скоростей реакции к±(Т),
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к2 (Т) и к3 (Т) позволяет, меняя начальные условия Т (0), v (0)
и с1 (0), установить зависимости решений этой системы

уравнений для любого z от Т (0), г; (0) и сх (0). В связи с этим естественно

в качестве входов* плазмохимического реактора принять

величины Г (0), v (0) и 7г (0).
Решение вопрбса о выборе величин, играющих роль выходов,

зависит от целевого назначения процесса и в известной степени

является условным. В качестве выходов плазмохимического

реактора в настоящей работе будут рассматриваться следующие
величины, определяемые в точке достижения максимума
концентрации ацетилена (zm):

а) длина отрезка от начала реактора z = 0 до z = zm. Этот

отрезок, на котором разыгрывается в основном процесс
превращения метана в ацетилен, обозначается через L и называется в

соответствии с терминологией, принятой в работе [37], эффективной
длиной плазмохимического реактора; _

б) максимум концентрации ацетилена с3 (zm);
в) степень разложения метана

$ __
Ci(0) — ci(*m) (37)

сТ(О)

Каждый из выходов является функцией всех входов, а также

параметрически зависит от констант скоростей реакций кг, к2 и

к3, которые являются коэффициентами в системе уравнений (36),
т. е.

L=8i[T(0),c1(0),v(0);k1,k2,k3] )

), и (0); кг, к2, к3] \. (38)

Л1,Ля,Лз] J

Ввиду того, что система уравнений (36) не может быть решена
аналитически, невозможно непосредственно определить

функциональные зависимости (38) выходов от входов и констант кг, к2
и к3. Однако численное интегрирование нашей системы уравнений
на ЭВМ позволяет решить следующие задачи.

1) Построить приближенные зависимости выходов от входов

при заданном наборе констант кх, к2 и к3. Эти зависимости ниже

будут называться статическими характеристиками

плазмохимического реактора.

2) Выяснить, в какой мере изменяются статические

характеристики плазмохимического реактора при изменении

совокупности констант Ац &2, к3 и тем самым рассмотреть вопрос о влиянии

* В дальнейшем мы не будем интересоваться зависимостями выходов от

входа у(0), так как в работе [15] показано, что изменение v (0) не влияет

на кинетику химических реакций, а лишь изменяет пространственные
масштабы процесса.
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неточности определения констант скоростей реакций на выходы

реактора. Различия в значениях выходов при фиксированных
входах, обусловленные изменениями той или иной константы

скорости реакции, могут служить мерой чувствительности

математической модели плазмохимического реактора к изменению

соответствующей константы скорости реакции.

Ввиду того, что в реальных условиях входы испытывают

случайные возмущения, возникает задача изучения влияния этих

возмущений на выходы реактора. Она рассматривается нами как

задача прохождения случайного воздействия через

преобразователь, которым в данном случае является плазмохимический

реактор. При этом математические ожидания выходов будут зависеть

от статистических характеристик возмущений. Очевидно, эти

зависимости не нужно принимать во внимание тогда, когда

разброс значений выходов, обусловленный неточностями

определения констант скоростей реакций, значительно больше изменений

выхода, вызываемых случайными воздействиями.

1. Построение статических характеристик

плазмохимического реактора

Численно интегрируя^систему уравнений (36) для пяти

вариантов каждого из входов сг (0) или Т (0) при фиксированном
другом входе, можно построить графические зависимости всех

выходов L, 73 (zm) и s от каждого из входов сг (0) и Т (0).
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Рис. 14. Зависимость максимальной концентрации ацетилена с3 (zm) (i),
степени разложения метана 5 (2), длины реактора L (3) от различных входов

плазмохимического реактора
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На рис. 14, а представлены зависимости с3 (zm), s и L от Т (0)

при фиксированных значениях входов сх (0) = 0,95 вес. доли и

v (0) = ЗЛО4 см/сек. На рис. 14, б представлены зависимости

сз (zm)> s л i от с, (0) при фиксированных значениях входов

Т (0) = 3,5.103 °К и v (0) = 3-Ю4 см/сек.
Используя эти графики, можно записать приближенные

аналитические зависимости между заданными выходами и входами,

аппроксимируя эти графики линейными и квадратичными

функциями.

Зависимости выходов с3 (zm) , L и s от входов Т (0) и сх (0.
представлены соответственно формулами (39—41) и (42—44)'

с3 (Zm) = 0,125 + 3,5 • 10~4 {Т (0) — 2000}, (39)
[2000<7'(0)<3000°К].*

сз (zm) = 0,476 + 3,44-10~4 {Т (0) — 3000} —1,6-10-' {Т (0)—3000}»,
(39а)

[3000<Г(0)<3500°К].

L = 67—9-10~2{Г(0) — 2000} + 0,44-10"*{Т(0) — 2000}2, (40)

[2000<Г(0)<3000°К].

L = 21—2,6• 10~2{Г(0) — 3000}—0,8- 10-3{Г(0)— 3000}3, (40а)

[3000<Г(0)<3500°К].

s = 24,7 + 5,83- 10-2{Г(0) — 2000}, (41)
[2000<Г(0)<3000°К].

s = 83 + 0,558-10"1 {Т (0) — 3000} —0,464 • 10~4 {Т (0)— 3000}2,
'

(41а)
[3000<Г(0)<3500°К].

с3 (zm) = 0,5887 +0,33 {сх (0) - 0,87}, (42)

[0,87<сх(0)<0,93 вес. доли].

c3(zm) =0,6085+0,1758(^(0) —0,93} —4,29{сх(0) —0,93}2 (42а)

[0,93 <c"i(0)<0,99 вес. доли].

L = 2,0+21,7 (с7(0) —0,87} + 3,88-10* {^(О)—0,87}2, (43)
[0,87<ci(0)<0,93 вес. доли].

* В квадратных скобках указаны диапазоны изменения входов, в которых

справедливы полученные зависимости.
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L = 4,7 + 24,17 {Cl(0) — 0,93} + 2,04- IO^cJO)—0,93}2, (43)

[0,93<ci(O)<0,99 вес. доли].

s = 100, [0,87<^!(0)<0,93 вес. доли]. (44)

s = 100— 0,391.102{Ci (0) — 0,93} — 0,417 {q (0)—0,93}2, (44a)

[0,93<c1(0)<0,99 вес. доли].

Приведенные зависимости всех выходов от входов сх (0) и

Т (0) показывают, что по отношению к этим входам плазмохими-

ческий реактор является нелинейным преобразователем, а

построенные графики и соответствующие им приближенные
аналитические выражения являются его нелинейными

характеристиками.

2. О влиянии флуктуирующих начальных условий
на решения системы (36). Постановка задачи

В выполненных выше расчетах начальные условия сг (0) и Т (0)
предполагались независящими от времени. В связи с этим

полученные характеристики реактора, рассматриваемого как

нелинейный преобразователь, являются его статическими

характеристиками. В реальных условиях начальная концентрация метана и

начальная температура газовой смеси испытывают случайные
колебания во времени. Математически случайные колебания во

времени начальной концентрации метана сг (0) и начальной

температуры Т (0) будем описывать в терминах стационарных

случайных функций [38, 39], считая сх (0) и Т (0) абсолютно
непрерывными стационарными нормальными случайными функциями
времени t*. Так как исследуемые случайные функции изменяются

в конечном интервале [#„., х°] [здесь под х понимается любая из

двух функций сх (0) и Т (0), необходимо воспользоваться

усеченными нормальными распределениями [40].
Одномерный усеченный нормальный закон распределения

имеет следующрш вид

0

1 г (г /т\\%Л

о

при

при #„<>!< а?0, (45)

при

* Для сравнения результатов, получаемых при таком подходе, с

экспериментальными данными, очевидно, требуется допустить еще, что эти

случайные функции являются эргодическими. Для этого достаточно, чтобы их

автокорреляционные функции не слишком медленно стремились к нулю

[39].
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где хг
= х (^), а ох — среднеквадратичное отклонение

стационарной случайной функции. Величина D подбирается так, чтобы

/i (xi) была нормирована на единицу в интервале задания

случайной функции.
Если входы нелинейного преобразователя являются

стационарными случайными функциями времени, то его выходы L, c3 (zm)
и s также будут стационарными случайными функциями
времени (предполагаем, что нелинейный преобразователь имеет

стационарные характеристики). Для определения статистических

свойств этих случайных функций используем формулы (39) —

(44). При этом предполагается, что нелинейный преобразователь
безынерционен [39, 41, 42], т. е. любой выход у (t) в данный
момент времени t выражается как функция любого входа х (t) в тот

же момент времени:

у (0 = Ф [х (*)]. (46)

3. Определение математических ожиданий

и корреляционных функций L, <Г3 (#ш) и s

Основное практическое значение при исследовании и

проектировании нелинейных систем имеет в настоящее время знание

корреляционной функции и математического ожидания

случайной функции выхода. Математическое ожидание <г/>
стационарного случайного процесса у (t) на выходе безынерционного
нелинейного преобразователя определяется следующим образом [43]:

<2/> = <2/i> + <2/2>, (47)
где

= D 2 A-2{S щ£=щ <£«*> - *b)W [0i (6°) - Qi (Eo)]} .

(49)

l (50)

l = J^L. (51)

Здесь
~

Aitt, Akt — постоянные коэффициенты в формулах (39) —

(44), х0 — значение х, разбивающее область изменения [х#, х°]
на два участка.
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Расчетная формула для корреляционной функции выхода

Ry(0) записывается в следующем виде [43]:

Ry (9) = S В» «*>' °х) -Г' (52)
п=1

где

Л, л (fc|_Z)!

xof-1 [Mln a°) - м1п (go)],
e = *2 —*1? (53)

(0) — нормированная автокорреляционная функция входа ху

dt, (54)

При практических расчетах по формуле (52) приходится
ограничиваться конечным числом членов этого ряда т. Оценка
точности приближенного определения корреляционной функции Ry(Q)
дается следующей формулой [43]:

\Rv(Q)-Ry(Q)\<4-°'v\ (56)
где

|в«)4г^' (57)

Результаты расчета зависимостей математических ожиданий

<£з (2т)>> <5> и <L> от среднеквадратичного отклонения начальной

температуры От [при заданном математическом ожидании
начальной температуры (Т (0)> = 3000° К и постоянном значении

начальной концентрации метана сх (0) = 0,95 вес. доли]
представлены на рис. 15, а кривыми 1, 2 и 3 соответственно. На рис. 15, б

кривыми 2, 2 и 3 представлены зависимости (с3 (zTO)>, <s> и <L> от

среднеквадратичного отклонения начальной концентрации
метана бм (при этом математическое ожидание начальной

концентрации метана <q (0)) = 0,95 вес. доли и постоянное значение

начальной температуры Т (0) = 3500° К).
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Рис. 15. Зависимость математических ожиданий максимальной

концентрации ацетилена <с^ (zm)> (2), степени разложения метана <s> (2) и длины

реактора <L> (3) от среднеквадратичных отклонений различных входов длазмо-
химического реактора [v (0) = 3 • 104 м!сек]

На основании этих графиков были построены приближенные
аналитические зависимости:

<с* (зт)> = 0,475 — 3,166- 10~5ат — 1,833.1(Г7 4,

<L> = 21 — 1,135 • 10-а вт + 0,355.1(Г4 4,
<А.> = 83 — 0,217- ИГ2 от— 0,283.10~44

(при 0<аг<300°К). (59)

ni) > - 0,6103 - 0,425 ам + 9,5 ^ ,

(60)

2-<s> = 99,2-40 av

(при 0<бм<0,02 вес. доли).

Расчет по формулам (52), (53) и (54) дал следующую формулу
для корреляционной функции выхода с3 (zm) RA (9) (при расчете
m = 3, <Г (0)> = 3000° К, Cl(0) - 0,95 и от

= 100° К):

Относительная ошибка определения корреляционной функции

выхода с3 (zm) ж 10%.

4. Влияние значений констант скоростей
высокотемпературного разложения метана и этилена
на входы плазмохи.чического реактора

Известно, что найденные различными авторами значения

энергий активации и предэкспоненциальных множителей констант

скоростей одних и тех же химических реакций часто колеблются
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в очень широких пределах, и выбор их наиболее вероятных
значений вызывает значительные трудности. Такая картина имеет

место и для процесса конверсии метана в ацетилен [44—46].
Схема реакций и значения энергий активации и предэкспо-

ненциальных множителей констант скоростей, полученные
разными авторами для этого процесса в различных экспериментах
и различными методами, приведены в табл. 6.

Таблица 6
Значения констант скоростей реакций процесса пиролиза
метана по различным литературным данным

2СН4*
fc2

С2Н4-*
ft

С2Н2-

Реакция

Л ТТ 1 Г)ТТ

^2П.4 -г" иьУ<1

С2Н2 -f- Ы2

2С+Н2

fo°, сек-1

4,5.1013
1015

2,57-Ю8
2,2.1011

1,7.10е

Е, ккал/моль

91
103

40
60

30

Литература

[44]
[45]

[44]
[46]
[44]

Для выяснения чувствительности математической модели
илазмохимического реактора к изменению констант скоростей
реакций кг и к2 при разных начальных температурах Т (0) нами

были построены статические характеристики, отражающие

зависимости выхода с3 (zm) от входа Т (0) при различных наборах
указанных констант и при фиксированных[входах t?(0) = 3.104 см/сек
и с1 (0) = 0,9 вес. долей. Для этого было проведено

интегрирование на ЭВМ системы уравнений (36) при следующих

комбинациях констант, взятых из табл. 6: (k^, к£), (/cf, к£), (kf, й£),
(к[\ h%)* и следующих трех значениях входа Т (0): 2,5.103;3,0-103
и 3,5«103°К при фиксированных входах v (0) = 3-Ю4 см/сек
и ci (0) = 0,9 вес. долей.

Расчеты выполнены в ВЦ АН СССР на ЭВМ «Стрела» методом
Ад мса — Штермера с автоматическим выбором шага и

относительной точностью 10~4. Время счета одного варианта
— 10 мин.

Статические характеристики, полученные в результате этих расчетов,

приведены на рис. 16, а и б. Из рассмотрения кривых,
приведенных на этих рисунках, можно сделать следующие качественные

выводы.
1. Как и следовало ожидать, для различных интервалов

температур влияние изменения констант скоростей различно.

* Индексы А, В, Су констант скоростей химических реакций указывают,
что они были взяты из работ [44], [45] и [46] соответственно. Константа

к3 была во всех случаях одинакова (см. табл. 6).
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Рис# 16. Зависимость различных выходов плазмохимического реактора от
начальной температуры Г(0) при разных наборах констант скоростей кх и кг
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, (zm) (I) и степени разложения метана

2. Замена константы скорости разложения метана к^ на &f
практически не влияет на значение и ход кривых, а замена

константы скорости разложения этилена (кА на к%) оказывает на них

существенное влияние. Это находит естественное объяснение в

том, что в рассматриваемом интервале температур относительное

изменение кх мало по сравнению с относительным изменением к2.
3. В соответствии с физическим смыслом константы скорости

химической реакции изменение к2 больше всего влияет на

эффективную длину реактора (т. е. практически на время реакции до

достижения максимума образования С2Н2) и меньше на

абсолютную величину этого максимума. Отсюда следует, что необходимо
с гораздо большей точностью определить экспериментальное
значение к2 и проанализировать возможные источники ошибок и

расхождений в значениях А2, полученных в работах [44,46].
Для того чтобы выяснить влияние на численное решение

одинакового относительного изменения кг и /с2, нами было

рассчитано промежуточное значение последней константы /с2 = 5,8.109
ехр (—51/RT), для которой

к2

кА

К

If
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т. е. ее относительное изменение равно относительному
изменению кг.

Результаты расчета при одинаковом относительном

изменении кг и к2 приведены на рис. 16, а, б. Как и следовало ожидать,
А АЛ

влияние замены к% на к2 несколько больше, чем замены к± на кх
(относительное изменение констант в обоих случаях одинаково).
Влияние на время реакции невелико и уменьшается с повышением

температуры, влияние на с3 (zm) несколько больше при высоких

температурах, чем при более низких, и больше, чем влияние

одинакового относительного изменения kf на /cf•
Возможно, что найденные выше результаты имеют несколько

более общее значение для высокотемпературных процессов,

представляющих последовательную цепь превращений. В каждом

конкретном случае решающую роль, конечно, будут играть
соотношения величин констант и «удаленность» реакции, к которым
они относятся, от конечного продукта, выход которого
прослеживается. В настоящее время нет критерия, который позволил

бы указать, в какой мере изменение той или иной константы

скорости реакции влияет на выходы плазмохимического реактора.

Полученные результаты указывают на возможность

использования следующего критерия чувствительности выходов
плазмохимического реактора к изменению константы скорости реакции:

где [c3 (zm)]ftP fc3 (zm)}hU — значения выхода с3 (zm),
соответствующие двум разным значениям одной и той же константы скорости

реакции к\ и кц.
Аналогичные критерии чувствительности можно построить

для выходов L и 5.

В заключение отметим, что затронутый выше вопрос является

частью более общей проблемы о чувствительности решений
системы уравнений химической кинетики к изменению входящих в

них констант скоростей реакций (см. стр. 65).
Проведенное исследование позволило построить статические

характеристики процесса и показать, что реактор можно

рассматривать как нелинейный преобразователь. При этом могут быть

установлены приближенные аналитические зависимости между

входами (например начальной концентрацией метана сг (0),
начальной температурой Т (0) газовой смеси) и выходами, т. е.

величинами, характеризующими процесс конверсии метана в ацетилен

(например максимумом концентрации целевого продукта с3 (zm),
эффективной длиной реактора L, степенью разложения метана

s). Эти зависимости могут быть установлены при нескольких

наборах констант.

63



Найденные зависимости выходов от входов реактора
позволяют выяснить степень чувствительности различных выходов к

одному и тому же входу, а также влияние одного и того же входа
на различные выходы как в случае детерминированных входов,
так и в случае непрерывных случайных колебаний последних.

Полученные при этом результаты позволяют сравнить влияние на

выходы флуктуации входов с влиянием неточности задания,

входящих в уравнения констант скоростей реакций. В частности,

для рассмотренного выше процесса пиролиза метана из

сравнения кривых 1 рис. 14, а и б, видно, что в заданной области

изменения величин входов Т (0) и сх (0) максимум концентрации

ацетилена с3 (zm) более чувствителен к изменению входа Т (0), что,

очевидно, необходимо будет учитывать при регулировании

выхода с3 (zm). В том случае, когда входы [в нашем случае Т (0) и

сх (0)] непрерывно и стационарно флуктуируют, они могут быть

математически промоделированы с помощью стационарных
случайных функций времени. Полученные приближенные
статические характеристики процесса позволяют найти математические

ожидания выходов (в рассмотренном примере с3 (zm), L и s) в

зависимости от среднеквадратичных отклонений входов [в данном

примере
— Т (0) и сг (0)], а также вычислить автокорреляционные

функции выходов [например с3 (zm)]. В частности, приведенные на

рис. 15, а и б графики математического ожидания {с3 ( zm)>

показывают, что при случайных колебаниях входов С1 (0) и Т (0)
среднее значение выхода целевого продукта ацетилена с3 (zm) может
понизиться на ~5,5% от значения этой величины при постоянных

начальных условиях.

Полученные в настоящей работе статические характеристики

плазмохимического реактора могут быть использованы при

решении ряда задач:

а) при рассмотрении вопроса об управлении конечным

состоянием процесса [например максимумом концентрации

ацетилена путем изменения входов сг (0) и Т (0)];
б) при решении более общей задачи о выборе оптимальных

(для заданного критерия оптимальности) значений входов

[например Т (0) и Cj (0) и др.].
Корреляционные функции входов и выходов могут быть

использованы для решения задач прогнозирования поведения

выходов реактора при флуктуирующих входах (путем применения

теории прогнозирования стационарных случайных функций).
Из рис. 16, а видно , что разброс значений выхода с3 (zm),

обусловленный неточностью определения констант скоростей

реакций кх и к2, при различных значениях входа Т (0) лежит в

диапазоне 2—10?/6. Так как понижение выхода с3 (zm) из-за

случайных флуктуации входов того же порядка, то эти флуктуа-
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ции необходимо учитывать при расчете плазмохимического

реактора.
Развитый здесь подход может быть без труда применен к

задачам с большим числом входов, выходов и констант скоростей.
Следует отметить, что нами рассмотрено, строго говоря,

сечение характеристической поверхности в многомерном
пространстве, «входы — выходы»; приближенное построение
характеристической поверхности в целом связано лишь с большой затратой
машинного времени.

В заключение отметим, что некоторые из рассмотренных выше

вопросов представляют собой задачи теории информации и

допускают соответствующее изложение.

§ 5. Влияние значений констант скоростей
химических реакций
на решение системы уравнений химической кинетики

(на примере окисления метана)

Рассматривая тот или иной вариант механизма реакции,
химики в относительно несложных реакциях оценивают возможное

влияние изменения значений некоторых констант скоростей на

ход и результаты реакции. Очевидно, подобные оценки
чувствительности исследуемого механизма реакции к изменению

значений констант скоростей если даже они возможны, становятся

затруднительными при изучении достаточно сложных реакций.
В связи с этим возникает задача разработки объективных

количественных критериев „чувствительности" механизмов сложных

химических реакций и стандартных методов их вычисления.

Как будет показано, развитый выше (см. § 1, гл. I) метод
позволяет получить с помощью ЭВМ полезную и объективную
информацию о чувствительности исследуемых механизмов к изменениям

разных констант скоростей на различных стадиях реакции при

различных условиях ее протекания.
Настоящий раздел посвящен разработке математического

метода, который позволяет:

1) дать количественное выражение чувствительности того или

иного механизма реакции (при заданной совокупности констант)
к изменению значений констант скоростей отдельных стадий с

помощью вводимых ниже количественных критериев

чувствительности,

2) построить алгоритм вычисления введенных критериев,

3) найти зависимость таких критериев от времени для
различных условий протекания реакции и для различных наборов
констант.

Указанный метод помогает увеличить информацию,
извлекаемую из экспериментальных кинетических данных, дать
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химику объективные критерии для оценки и сравнения влияния

различных констант на различных стадиях той или иной реакции.

Предлагаемая методика иллюстрируется ниже на примере

реакции окисления метана.

1. Постановка задачи

Как известно, задачи химической кинетики с математической

точки зрения сводятся к задаче решения и исследования систем

нелинейных обыкновенных дифференциальных уравнений
первого порядка с коэффициентами, роль которых играют
константы скоростей реакции kq (q = 1,2,..., т). Ниже для простоты
изложения рассматривается случай изотермических реакций (для
которых все kq = const) в статических условиях; обобщение
полученных ниже результатов на неизотермические реакции в

потоке не представляет принципиальных затруднений.
Система уравнений химической кинетики может быть

записана в следующем виде:

dc-

-Sj- = fi{c,k)(] = l,2,...,n) (62)

при начальных условиях Cj (0) = с], где функции /7- (с, к)
представляют суммы членов вида

где Cj
— текущие концентрации; п — число компонентов,

участвующих в реакции; р, s — порядок реакций.
Решения системы (62) являются функциями времени и

зависят от kq как от параметров, т. е. Cj
=

Cj (t, к). Из линейности

правых частей системы (62) относительно ка следует [47]
существование и непрерывность производных dcj (t, k)/dkq. При этом

определены и непрерывны вторые смешанные производные функций
Cj (t, к) по t и kq. Дифференцируя систему уравнений (62) по kq
(при заданной совокупности значений kq) и обозначая

дс.
uh(t,k) =3^ •

получаем следующую систему уравнений для функций Ujq:
du-

-£- = Fjq[c(t),u(t),k], (63)
где

df . [с (0, к]
Fi[c(t) u{t)k\= -i-l

+21ajl[c(t),k]ulq[c(t)1k],

/cj —

Ввиду того, что функции Fjq зависят не только от Ujq, но и

непосредственно от Cj, системы уравнений (62) и (63) следует решать
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совместно при следующих начальных условиях:

с, (0) = с) ; ин (0) = 0. (64)

Второе из равенств (64) отражает тот факт, что с) не зависят от

констант скоростей реакций kQ.
Решая совместно систему уравнений (62) и (63), получаем не

только все концентрации Cj, но и пт функций iijQ для всех

моментов времени. В настоящее время систему уравнений (62) и (63)
даже для не очень сложных химических реакций можно решить

лишь путем численного интегрирования на электронных
вычислительных машинах. Предложенный в § 1 главы I метод позволяет

получить ее численное решение на ЭВМ с заданной степенью

точности.

Основным отличием системы уравнений (63) от системы (62)
является то, что функции ujQ могут принимать (в отличие от cj)
как положительные, так и отрицательные значения, а также то,

что на величины ujq не накладывается никаких ограничений. Эти
особенности системы уравнений (63) не существенны для
численного интегрирования при применении разработанного выше

алгоритма.

Однако при этом следует учесть, что для функций u,jq, так

же как и для концентраций су, должно выполняться уравнение
баланса. Действительно, в любой момент времени t 2 ujq(t)
равна нулю, и поскольку Hujq (0) = 0 (64), 2 и

jq (t) = 0. Таким

образом, решение системы уравнений (62) и (63) в дополнение к

информации, извлекаемой из решений системы (62) уравнений
химической кинетики, позволяет дать количественные оценки

чувствительности решений системы (62) к изменению входящих в нее

констант скоростей реакций.

2. Критерии чувствительности уравнений
химической кинетики изотермических реакций
к изменению входящих в них констант скоростей реакций

С помощью численного решения системы уравнений (62) и

(63) можно определить следующие критерии чувствительности

решений системы уравнений химической кинетики (62) к

изменению входящих в них констант скоростей реакции.
Очевидным, хотя, вероятно, и не самым удобным критерием,

являются сами функции

»* = £*■• (65)dkq v '

Трудность использования указанного критерия связана с тем, что,

как известно, kq могут обладать различной размерностью,
обусловленной различным порядком реакций, входящих в исследуемый
механизм; значения их могут отличаться друг от друга по вели-
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чине на много порядков. Кроме того, различные концентрации

Cj могут очень сильно отличаться друг от друга, а также

существенно изменяться в ходе реакции. В связи с этим целесообразно
ввести следующие критерии чувствительности*:

с) дс. а, к)J 7 14- 7 \ /RPL\

dc§(t,k) din сjit, к) ujq(t,k)
Cj(t,k)dkq

"

dkq
—

Cj(t,k)
' V*''

kqdCj{tyk) d]nc.(t,k)
_

UjQ(t,k)kq
cj (t, k) dkq

~~

dlnkq
—

cj (t, k)
' (°^

kqdCj(t,k)_ dCj(t,k)
_

kqu.q{ttk)
^ (69)

Cj(k) dkq Cj(k)dlnkq Cj (k)

где Cj (к) — некоторое характерное (зависящее от констант

скоростей kq как от параметров) значение концентрации /-го

компонента. В качестве Cj (к) можно принять максимальное значение Cj.
Критерии (65) — (69) дают ответы на несколько различные

вопросы. Например, критерий (65) показывает (при всех значениях

t) насколько изменяется концентрация Cj в результате изменения

константы скорости kq на Akq при Akq -> 0. В то же время

критерий (68) определяет для каждого момента времени относительные

изменения Acj/cj концентрации Cj, вызываемые относительными

изменениями 1 —> 0 константы ка и т. д. Критерии чувстви-
kq

тельности (65) — (69) могут быть полезны, в частности, при
изучении оценки влияния изменения каждой из констант kq на любую
из концентраций Cj для любого момента времени t, а также

оценки влияния какой-либо одной из констант на все (или часть)
концентраций для любого момента времени. Очевидно, что при этом

выяснится, какие из констант и на каких стадиях реакции (для
каких моментов времени) являются определяющими или,

наоборот, мало влияющими на реакцию (при заданной совокупности^).
Такое исследование может быть проведено для любых начальных

соотношений концентраций и термодинамических условий.
Сделаем еще одно замечание. Все изложенные результаты,

относящиеся к критериям чувствительности, справедливы для
бесконечно малых изменений констант kq (при заданной их

совокупности). Практически же, как это обычно делается,
рассматриваются конечные приращения Akqt Поскольку решения системы

(62) и (63), дающие Cj
=

cj (t, к) и ujq
=

ujq (t, к), являются для

всех моментов времени гладкими функциями параметров кя^

* Заметим, что критерии (67) и (68) можно применять только при значениях

cj ф 0.

68



то такое допущение при соблюдении необходимой осторожности
не приводит к существенным ошибкам. Очевидно, что достаточным

математическим условием для этого является малость членов

порядка выше первого в разложении функций Cj (t, к) по степеням

Akq. Так как система (63) линейна по Ujq, то чувствительность

концентрации к одновременному изменению нескольких констант kq
может быть представлена как сумма соответствующих чувствитель-

ностей концентрации Cj к изменению отдельных констант.

3. Реакция окисления метана

В качестве примера применения изложенного выше метода

рассмотрим изотермическую реакцию газофазного окисления

метана, схема которой, не включающая реакции обрыва цепей,
описана в работах [48, 49] и приведена в табл. 7. В таблице значения

констант kq при Т = 103 °
К приведены к размерности сек'1

с помощью следующих соотношений:

Т

где

kQ — кйс0\ с0 = „ „- = 0,122-10 4 моль/см3,
л QY 0

Го = 273°К, Vo = 2,24-10* см3/молъ.

Таблица 7

Механизм окисления метана

Реакция

GH4 -f- О2—*■ СНз -j- НО2

СН3+О2~* CHgOO

СН3ОО^> СН2О + ОН

СН4 + ОН-> СН3 + Н2О

СН2О + ОН-* Н2О + НСО

СН2О + О2-> НСО + НО2
НСО + О2-* СО + НО2

СН4 -\- НО2—» Н2О2 -|- СНз

СН2О+НО2-* Н2О2 + НСО
GO + ОН-* СО2 + Н

СII4 -}- Н —» СНз -\~ Н2

СН2О + Н -> НСО + Н2

*

ftg =*kOqexv(-E/RT).

см3/моль-сеп

1014
юн
1013**
1Q14
1015
1016
юн
Ю14
1Q14
1Q14

1,5-1013

4.10И/Т"

Е

ккал/моль

55

0

20

8,5
6,3

32
0

19,75
8,5
7

11,2
2

**
[^03^ = сек~г-

Значения •

kqf сек-1

(Т=1000 °К)

0,116-10-2
0,122-107
0,425-109
0,169-Ю8
0,512-109
0,123-Ю3
0,122-107
0,588-105
0,169-108
0,359-101°
0,643-Юи

0,563-108



Система уравнений (62) для рассматриваемой реакции и часть

системы уравнений (63), соответствующая изменению лишь одной
константы скорости к1% имеют следующий вид:

^- == — с± {кхс2 + /с4с7 + &8с4 + кпси)

-SL = _ к2с2с3 + Сх (кхс2 + к^с7 + кпси + /с8с4)

-^- = — с4 (A8Ci + А9с6) + с2 (Лл + /г6с6

-^- = — късъ + АаСаСз

-^- = —с6 (к5с7 + &6с2 + ^9с4 + к12си) +

£ А10с10) + к3с5

^- = — к7с2с9

d

Л12Св)

= — кпсгси — А:12с6с14 + А:10с7с10

'•

ж

(к dCl L к дс? Л к дс* L к
дс*

■ж {)-
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*; + k» ж

дс\ . 7 дел

Ж + к*ж
дсъ . 7 д

i (ж)= ~w

d ( дс7\ дс7 tu
, , v

ai \ OKi J ок\

г fjc dCl
_L h

дс&
_U k

dCl° \jLlc дСь

V dki okx
' xu

a/ci /
'

a/ci

dt

til/ \ Ufi\ J Uti\ Ulb\ ui»|

d f dcn\ dcA ,, _ , 1л л ч , л
/, 5ci , ^сб

ж ^+k^+c" (^ ж+*» ж)
~df\dh)

= kl0°7 Ж + 1010 Ж

~

Cl4 (^u dkf + ^12 ЖГj + kloC7Ж "^ ^loCl0 a^" J

Здесь для концентраций (в объемных долях) четырнадцати
компонентов, участвующих в рассматриваемой реакции,

используются обозначения, введенные в § 3 (стр. 41). Для определения

71



влияния величины константы кг на решение системы (70) надо

решать совместно систему уравнений (70) и (71). В случае

необходимости определить влияние изменения других констант должны

быть записаны уравнения, аналогичные системе (71), которые

интегрируются совместно с системой (70). Таким образом можно

найти чувствительность всех концентраций Cj по всем константам

kq. В то время как для получения данных о чувствительности всех

концентраций с}- к изменению одной константы достаточно

составить и решить совместно с (70) систему уравнений типа (71), для

определения чувствительности одной концентрации к изменению

всех констант kq необходимо получить решение всех п (т-\-1)
уравнений для функций с j и Ujq. Для получения такого решения можно

(если это позволяют возможности ЭВМ) составить и

проинтегрировать сразу все п(т + 1) уравнения. Если же этого сделать нель-

дс.

зя, то следует находить функции Ujq = -^- сначала для одной

группы констант, затем для другой и так до тех пор, пока не

будут исчерпаны все константы kq.
Система уравнений (70) и (71) при различных kq

интегрировалась на ЭВМ БЭСМ — ЗМ в ВЦ АН СССР методом, предложенным
на стр. 20 с относительной точностью 10~4—10~б при
автоматическом выборе шага интегрирования. Время счета одного

варианта, соответствующего изменению одной из констант скоростей,
составляет —30 мин.

При интегрировании на ЭВМ значительное время тратится на

вычисление тех концентраций [имеющих Cj (0) = 0], скорость
выхода которых из нуля мала; например, при интегрировании до
t = 1(Г2 сек около 50% машинного времени тратится на

интегрирование системы (70) и (71) на протяжении индукционного

периода (до t ^ 10~4 сек), при котором состояние системы практически
еще не отличается от начального. Время вычисления может быть
значительно сокращено за счет снятия проверки точности по этим

концентрациям, пока они малы в пределах точности. В процессе
вычисления баланс как по Cj, так и по Ujq выполняется с точностью

до пяти-шести знаков.

4. Обсуждение результатов интегрирования
системы уравнений (70), (71)
для реакции окисления метана

*

На рис. 17—22 представлены кривые, иллюстрирующие
расчеты по критериям чувствительности (65) — (69) для реакции
окисления метана. Эти кривые получены в результате интегрирования

* Авторы выражают благодарность И. В. Игониной, которая выполнила
численное интегрирование системы (70)— (71) и провела первичную
графическую обработку результатов счета.
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системы дифференциальных уравнений (70), (71) модельной
изотермической реакции газофазного окисления метана при

следующих условиях:

Го = Ю3 °К; сх (0) - 0,29; с2 (0) = 0,71; ср (0) = 0

(р = 3,4,..., 14); (^=о = 0 (/ = 1,2,..., 14; q = 1, 2,..., 12), (72)

а также при фиксированной совокупности значений констант

скоростей реакции (см. табл. 7).
На рис. 17—22 приведены зависимости от времени критериев

чувствительности пяти концентраций [CHJ, [О2], [СН3], [СН2О]
и [Н2О] к изменению различных констант скоростей (рис. 17—20)
и критериев чувствительности различных концентраций к

изменению двух констант скоростей (кг и kQ) (рис. 21, 22). При этом

для сравнения на некоторых рисунках приведены кривые

зависимости от времени различных критериев чувствительности для

одних и тех же концентраций (cj) и констант (kq), а также (для
удобства) — кривые зависимостей концентраций от времени.

Как видно из приведенных рисунков, значения критериев

чувствительности могут быть положительными, отрицательными
или обращаться в нуль. Положительное (отрицательное) значение

критерия чувствительности в момент времени t означает, что при

принятых значениях констант увеличение данной константы

скорости приводит к возрастанию (уменьшению) значения

концентрации Cj в данный момент времени. Очевидно, равенство
значения критерия нулю в момент времени t означает, что в данной
временной точке малое изменение kq не приводит к какому-либо
изменению Cj.

При рассмотрении кривых рис. 17—22 видны следующие их

особенности.

Для концентраций, имеющих максимум (например для СН2О,
рис. 17, а, б), кривые чувствительности по отношению к изменению

различных констант скоростей распадаются на две группы:

а) кривые, которые при всех значениях £, т.е. на всем

протяжении реакции, находятся в области положительных (или
отрицательных) значений критерия чувствительности; б) кривые,

которые с течением времени могут переходить из области значений

критерия одного знака в области значений другого знака.

Для концентраций, значения которых с течением времени

монотонно возрастают или убывают (например Н2О, рис. 18), имеют

место лишь кривые первого типа.

Таким образом, величина и знак значения критерия
чувствительности какой-либо концентрации Cj к одной и той же константе

kq может в ходе реакции существенно изменяться. Отсюда следует,
что при сравнении значений критериев чувствительности для раз-
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Рис. 17. Зависимость от времени чувствительности

концентрации формальдегида (сб) к изменениям констант kq (д =1,2, ... 12)
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Рис. 18. Зависимость от времени чувствительности

концентрации воды (с8) к изменениям констант кь,къ,к8,к10
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Рис. 19. Зависимость от времени концентраций метана (сх) и кислорода
и их чувствительности к изменению констант fo, &e, ks.
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личных Cj или kq необходимо
оговаривать время или во

всяком случае стадию реакции, для

которой производится

сравнение.
Как и следовало ожидать,

в один и тот же момент времени
и при одинаковых условиях

реакции разные критерии
чувствительности имеют различные
численные значения одного и

того же знака (в частности, они

одновременно пересекают ось

абсцисс) (рис. 17, а; 18—21).
Если кривая, соответствующая
какому-либо критерию, имеет

положительный максимум

(отрицательный минимум), то

кривые для других критериев

могут иметь те же особенности со

сдвигом по горизонтальной и

вертикальной осям (см. рис. 17,
а, 20, 22). Критерии
чувствительности каждой из

концентраций СН2О, Н2О, СН4, О2 и СН3 по отношению к изменению

различных констант скоростей kq на различных стадиях реакции
приведены на рис. 17, а, б, 18—20.

Рассмотрим, например, поведение критериев
чувствительности указанных концентраций в моменты времени вблизи tm = 2.10~3

сек, где концентрация СН2О достигает максимума (см. рис. 17, а).
Отметим, что концентрация формальдегида на этой стадии реакции
наиболее чувствительна к изменению констант скоростей /с4 и

к8 (определяющих скорости реакции СН4 с радикалами ОН и НО2)
и констант къ, к2. При этом критерии чувствительности
концентрации СН2О к изменению &4 и ks имеют положительный знак, а

по отношению к изменению къ и к9 — отрицательный *.
В то же время чувствительность концентрации СН2О к

изменению константы kQ (определяющей скорость реакции СН2О с О2)
вблизи tm = 2.103 сея мала. Из рис. 17, б видно, что вблизи tm =
= 2-10"3 сек чувствительность концентрации формальдегида к

изменению констант кц к2, к3, к7, к1г (см. табл. 7) относительно мала

(вблизи этой точки некоторые из них меняют знак). Вблизи tm =

Рис. 22. Зависимость от времени

чувствительности концентраций СН3
(с8), СН3ОО (св), ОН (с7), НСО (сд) к

изменению константы к6

Цифры на кривых
— номера исследуемых

концентраций с
^

Из рис. 17, а видно, что увеличение ki (или к8) на ~10% при tm—2 x
XiO"3 сек приведет к увеличению концентрации СН-зО на ^30%; в то же
время возрастание кд на 10% вызовет уменьшение концентрации СН2О на ^70%.
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= 2Л0 3
сек концентрация Н2О обладает наибольшей

чувствительностью (с положительным знаком критерия) к изменению к6
(см. рис. 18). Концентрация СН3 обладает максимальной
чувствительностью с положительным знаком критерия к изменению

константы /с6 и несколько меньшей по абсолютной величине (но при

обратном по знаку значении критерия) чувствительностью к

изменению к5 (см. рис. 20). Можно произвести сравнение
чувствительности концентраций О2 и СН4 к изменению констант к2, kQ и

ks (см. рис. 19).
Из приведенных рисунков видно также, в какой мере

соотношение значений критериев чувствительности одной и той же

концентрации по отношению к различным константам изменяется в

ходе реакции. Здесь возможны различные случаи:

а) Качественное соотношение (меньше — больше) сохраняется
на всем протяжении реакции, хотя количественно отношение

значений критериев на различных стадиях реакции различно

(например из рис. 17, а видно, что чувствительность концентрации

СН2О к изменению /с4 и ks на всем протяжении реакции больше

чувствительности этой концентрации к изменению к6).
б) Качественное соотношение изменяется в ходе реакции.

Например, на рис. 17, а, б видно, что так обстоит дело с

чувствительностью СН2О по отношению к изменению констант къ и к9; к2 и /си
и т. д.

На рис. 17, а, 19—20 приведены для сравнения кривые
изменения во времени критериев (66) и (68), а на рис. 21 —критериев

(68) и (69). Из этих рисунков видно, что, как и следовало ожидать,

с течением времени эти критерии ведут себя различно; это легко

объяснимо. Например, различия в поведении критериев (68) и (69)
на рис. 21 объясняются тем, что критерий (68) определяет
изменение концентрации, отнесенное к ее текущему значению, а

критерий (69) — к максимальному ее значению.

Отметим также, что проведенные расчеты позволяют выделить
те из констант, изменения которых оказывают наименьшее влияние

на те или иные концентрации на всем протяжении реакции. Так,
из рис. 17, б видно, что кривые зависимости от времени критериев
по к3 и k-i на протяжении всей реакции находятся ближе к оси

времени, нежели другие кривые. Это означает, что изменения

констант к3 и к? оказывают наименьшее влияние на

концентрацию СН2О.
Расчеты показали, что изменение константы к3 оказывает малое

влияние и на другие концентрации (за исключением

концентрации СН3ОО, которая, однако, сама мала). Это обстоятельство

показывает, что в схеме реакции стадия, которая определяется
константой к3, протекает с большой скоростью. Такой вывод

согласуется с результатами Семенова [31]. С точки зрения
математической структуры системы уравнений (70) малое влияние

константы к3 объясняется тем, что эта константа входит в уравнения
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только в виде произведения к3 на концентрацию с5, которая мала на

всем протяжении реакции.
В заключение сделаем несколько замечаний.

1. Построенные критерии чувствительности должны позволить

объективно подойти к оценке роли тех или иных констант

скоростей отдельных стадий сложных химических реакций. При этом

одновременно находятся те реакции, которые являются

определяющими для процесса на различных его этапах. Однако
интерпретация полученных выше кривых пока не может считаться

достаточно ясной.

Необходимо иметь в виду, что как в механизме сложной

реакции, так и в системе дифференциальных уравнений,
соответствующих этому механизму, изменения одной из констант kq вызывают

в системе в целом такие изменения, которые охватывают, строго

говоря, в той или иной мере все концентрации на всем протяжении

реакции. Определяя с помощью критериев (65) — (69)
чувствительность различных концентраций к изменению констант кд,мы,
по существу, определяем чувствительность целостного
химического процесса к той стадии его механизма, которая
характеризуется данной константой kq. В то же время нельзя забывать, что в

силу самого характера системы дифференциальных уравнений
процесса в любом таком критерии отражаются в той или иной

степени изменения всех концентраций, т. е. косвенно и влияние

значений других констант kq. С точки зрения кибернетики механизм

реакции есть система, элементы которой взаимоопределены как

в любой момент времени t, так и в их временной эволюции.

Отсюда вытекает и сложность (часто незамечаемая) содержания,
вкладываемого в понятие чувствительности.

Знание величин dcj/dkq существенно для правильной
организации эксперимента по определению констант скоростей kq и

оценки качества его результатов *.

Критерии чувствительности могут быть использованы не

только в случае гомогенных газовых реакций, но и в любых других
типах химических процессов (процессов гетерофазных,
происходящих в конденсированных фазах, твердом теле и т. п.). Подход,
аналогичный развитому выше, может быть использован и для

изучения влияния различных параметров (например степени запол-

* При проведении изотермических реакций, например, температура
определяется с некоторой погрешностью А Г. Тогда связанная с этим ошибка

dk

определения констант Akq = —L AT.

Использовав уравнение Аррениуса с энергией активации Е ^> R Г, найдем
Ac- ^-,д1пс. е Д7'

L = У L _±L_ е, где е — .

Cj ^d[nkq RT Т
q

Отсюда следует, что Acj/cj может быть достаточно велико и при е<^:1.
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пения поверхности катализатора, длины цепи и т. д.) на ход

химической реакции.

2. В неизотермических реакциях можно принудительно на

той или иной стадии изменять температуру (это можно сделать,

например, в случае реакций в стационарном потоке). Тогда знание

величин dcj/dkq поможет оценить последствия такого постороннего
термического воздействия на ход сложной химической реакции.
Аналогичная ситуация возникает и при необходимости учесть
влияние стенок, подсветки излучением, вбрасывания в зону
реакции дополнительного количества того или иного компонента.

Развитый подход может быть обобщен на случай
неизотермических реакций. Для этого необходимо лишь вместо величин

dcj/dkq рассматривать величины dcj/dk^q и дс^дЕя,ще kOq — пред-

экспоненциальный множитель, Eq — энергия активации. При
этом число уравнений типа (71) возрастет, но методы их решения

останутся неизменными.
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Глава II

ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ КОНСТАНТ СКОРОСТЕЙ

ЭЛЕМЕНТАРНЫХ СТАДИЙ
И ВЫБОР НАИБОЛЕЕ ВЕРОЯТНОГО МЕХАНИЗМА

СЛОЖНЫХ ХИМИЧЕСКИХ РЕАКЦИЙ

§ 1. Методы поиска на ЭВМ значений
констант скоростей химических реакций

При количественном изучении кинетики химических реакций
исследователю чаще всего приходится решать следующие задачи

([1], стр. 150).
1. Известна схема реакции и величины констант скоростей

всех стадий. Требуется рассчитать зависимость от времени

концентраций некоторых или всех компонентов реакций.
2. Известна схема реакции и экспериментальные

кинетические кривые некоторых или всех компонентов; при этом константы

скоростей ряда (или всех) стадий неизвестны. Требуется найти
численные значения констант таким образом, чтобы они

приводили к удовлетворительному описанию эксперимента.

3. Возможно несколько вариантов механизма реакции.

Необходимо решить, какой из возможных механизмов процесса
является наиболее вероятным.

Очевидно, что третья задача включает в себя первые две.

Действительно, для того чтобы решить, какой из возможных

механизмов процесса следует предпочесть, необходимо для каждой
схемы реакции найти соответствующие константы скоростей. С

другой стороны, при нахождении констант скоростей требуется
решать и первую задачу, поскольку нужно определить, совпадут
ли рассчитываемые кинетические кривые с опытными.

Различные подходы к решению первой задачи изложены в

главе I. Здесь будет рассмотрено применение методов
вычислительной математики для решения других задач — определения
констант скоростей отдельных стадий заданной схемы реакций и

выбора на основе экспериментальных данных наиболее вероятного
механизма реакции из нескольких гипотетических механизмов.

В случае сложных химических реакций решение этих двух
задач без использования ЭВМ либо затруднено, либо вообще
невозможно. Применение ЭВМ для определения констант скоростей
химических реакций является, как это будет видно из дальнейшего
изложения, частным случаем более общей математической задачи—
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отыскания экстремумов некоторой функции многих переменных.

Методы решения таких задач весьма разнообразны и не все из

них нашли применение для исследования кинетики сложных
химических реакций. Далее мы рассмотрим лишь наиболее
распространенные и наиболее эффективные из этих методов. Что касается

задач о выборе механизма реакции, то они, как правило, требуют
для своего решения применения некоторых достаточно общих
положений теории вероятностей, математической статистики и

теории проверки статистических гипотез. Необходимые сведения по

этим дисциплинам будут предполагаться известными читателю.

1. Простые методы нахождения констант

К простым методам определения констант скоростей можно

отнести метод проб и ошибок, метод последовательного перебора
возможных значений констант и метод Гаусса — Зайделя. Все
три метода находят применение при изучении химической

кинетики.

Так, метод проб и ошибок использовался для определения

констант скоростей каталитического окисления этилена в окись

этилена [2], при изучении кинетики полимеризации этиленимина

[3] и в других случаях [4, 5]. Метод проб и ошибок представляет
собой вариант метода случайного поиска с обучением.
Определение констант производится следующим образом. В диапазоне
возможных значений выбираются наугад какие-либо конкретные
величины констант. Последние подставляются в дифференциальные
уравнения кинетики, которые интегрируются численно на

ЭВМ*.

Результаты расчетов различных вариантов сравниваются

между собой и выбираются новые пробные значения констант.

Интуиция исследователя играет в этом методе большую роль. В

литературе описаны некоторые формальные подходы к методу

проб и ошибок [6, 7].
Основные черты метода последовательного перебора

возможных значений констант скоростей удобно показать на

конкретном примере.

Рассмотрим следующую схему реакций:

А —> продукты,
"к

А + В—^* продукты.

* При проведении реакции в установке проточно-циркуляционного типа

кинетика представляется системой алгебраических уравнений. При
обработке данных, полученных в таких установках, машинное время

существенно сокращается, методы же нахождения констант не меняются.

83



Кинетика этих реакций описывается системой двух

обыкновенных дифференциальных уравнений

1Ш.=-Ь [А] [В]

Интегрирование системы (1) дает, согласно работе [8],

(1)

(2)

где

индекс 0 относится к моменту времени t = 0.

Приняв какое-либо конкретное значение одной из констант

скоростей, например кх, проведем вычисление концентрации [А]

Рис. 23. Влияние Ы на величину

рассчитываемой по уравнению (2)
концентрации компонента А при

фиксированном значении кх
Цифры на кривых указывают на

различные значения к2, принятые для расчета.

Точки — экспериментальные величины.

Масштаб по осям t и [А] произвольный

для нескольких значений другой константы (рис. 23). Расхождение
расчетных кривых и опытных точек можно выразить, например,
величиной среднего отклонения

N

(3)
и=1

вычисленныегде [А]и — экспериментальные значения; [А]и
значения концентрации; N — число опытов.

Если отложить величины А, полученные по формуле (3) в

координатах Д — к21 то мы получим некоторую кривую (рис. 24).
Величина к2, отвечающая минимуму на этой кривой, будет
наилучшим значением данной константы при фиксированном значении

кг. Повторив описанный расчет с другими величинами кг, можно

найти наилучшие значения обеих констант скоростей (рис. 25).
Заметим, что в данном случае величину Д геометрически можно

интерпретировать как некоторую поверхность в трехмерном про-



странстве. Эту поверхность удобно представить на плоскости (в
координатах кг — к2) в виде контурных кривых равных

отклонений (рис. 26).
Описанный метод был успешно применен для определения

параметров уравнения Аррениуса (предэкспоненциального
множителя и энергии активации) при изучении кинетики гидродеал-

килирования толуола в неизотермических условиях [9].

Рис. 24. Зависимость среднего
отклонения опытных и

вычисленных значений

концентрации компонента А от

величины константы &2 (при
фиксированном значении кг)

Очевидно, что если по опытным данным нужно найти три
кинетических параметра, то графики рис. 25 или рис. 26 следует

построить для разных значений третьего параметра.

Метод легко обобщается на случай определения нескольких

параметров. Программирование этого метода несложно, причем

необходимый объем памяти ЭВМ невелик. Однако время
вычислений, требуемое для определения констант, резко возрастает с

увеличением числа подбираемых параметров.

Рис. 25 Графический выбор
наилучших значений констант

кх и кг

Цифры на кривых 1 — 4

соответствуют разным величинам кх

Для решения некоторых задач линейной алгебры иногда
применяется метод Гаусса — Зайделя. Он может быть использован

в качестве простого способа нахождения констант скоростей.
Идея метода состоит в следующем. Пусть нам нужно найти к±
и к2 в системе (1). Как и ранее, при некотором фиксированном
значении одной из констант [кг) найдем оптимальное значение

другой константы (см. рис. 23). Теперь фиксируем найденное
значение к2 и приступаем к варьированию кх. Затем при найденном кх
вновь ищем оптимальное значение к2 (которое на этот раз может
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быть другим) и т. д. Итерационный процесс повторяется до тех

пор, пока не будет найден минимум (рис. 27).
Метод Гаусса — Зайделя применялся при изучении

кинетики пиролиза метана [10] и полимерных материалов [11]. В первом

случае метод использовался лишь на начальных этапах поиска

0 кг

Рис. 26. Контурные кривые (Д^
Аг и А3) поверхности отклонений'

Цифры на кривых соответствуют

разрезам поверхности, представленным на

рис. 25. М — точка минимума

Рис. 27. Движение к минимуму

среднего отклонения методом

Гаусса — Зайделя

1,2 — номера исходных точек. М —

точка минимума

кинетических параметров. В работе [12] предложено применять
его только для грубой минимизации. Следует учитывать, что в

случае поверхностей, вытянутых в каком-либо одном
направлении, возможно «зацикливание» процедуры поиска [13].

Прежде чем перейти к описанию более сложных и более

эффективных методов определения констант скоростей, остановимся

на рассмотрении количественных критериев подбора их

оптимальных значений.

2. Количественные критерии подбора
оптимальных значений констант скоростей

В простом случае, когда нужно найти константу скорости
только одной стадии, достаточно одного опыта. При этом для

определения константы используется непосредственно опытное значение

концентрации, так что обратная процедура
— вычисление

концентрации по известному значению константы — не дает

отклонения от опытной величины. Однако поскольку эксперимент всегда

сопровождается некоторой ошибкой, обычно проводят несколько

опытов, чтобы иметь возможность не только найти усредненную

константу, но и проверить принятый порядок реакции ([1, стр.

162]).
Если задача заключается в определении нескольких

параметров, то и тогда можно точно описать эксперимент, взяв число
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опытных точек равным числу параметров. Повторяя серию
опытов и последующую их обработку, можно набрать ряд значений

каждой константы. Такой подход малопригоден по причине
больших затрат машинного времени для многократного решения

трудоемкой задачи поиска констант.

Таким образом, практически нам выгоднее решать задачу

определения параметров один раз, но число опытных точек

должно при этом превышать число параметров. Решение вопроса о

необходимой степени переопределенности задачи зависит от ряда

причин, обсуждение которых мы проведем несколько позднее.

Очевидно, что при таком подходе невозможно получить
значения констант, приводящие к абсолютному совпадению
вычисляемых и опытных величин концентраций. Константы
подбирают, минимизируя рассогласование опыта и расчета. Выше при

рассмотрении простых методов определения констант мы

пользовались величиной среднего отклонения. Однако можно было бы

минимизировать и другие величины, характеризующие расхождение

эксперимента и машинного счета. Так, например, в книге [14]
минимизировалась сумма отклонений, в других работах [15—17]—

сумма модулей отклонений, в [10, 12, 18—20] — сумма
квадратов отклонений. В работе [21] применяли нормированную сумму

квадратов отклонений, причем в качестве весов выступали
обратные значения дисперсий, обусловленных ошибкой эксперимента.

Иногда в качестве весов берут обратные значения опытных величин,

возведенные в квадрат [22, 23]. Находит также применение

критерий, согласно которому минимизируется сумма квадратов

отклонений логарифмов [24]. В работе [25] предложено определять
константы из условия достижения минимума коэффициента
множественной корреляции

N N

и=1

где си и Си—соответственно опытное[и вычисленное значение

концентрации; с — средняя концентрация в N опытах.

Возникает естественный вопрос, не приведет ли пользование

разными критериями к разным значениям констант. Решение
этого вопроса, очевидно, зависит от конкретной задачи и главным

образом от того, какой вклад в величину критерия вносят отдельные его

составляющие. Разложив в ряд Тейлора по степеням разности

си
—

си каждый из упомянутых критериев, можно утверждать, что

вклад линейных членов разложения будет примерно одинаковым,
в то время как роль квадратичных членов и членов более высокого

порядка может быть разной. Поэтому следует ожидать, что в

общем случае значения констант, определяемые по разным
критериям, будут различаться. В литературе имеется целый ряд
примеров такого различия [12, 20, 26—29].
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Для того чтобы выбрать наилучший критерий, нужно решить,
какие свойства констант скоростей считать оптимальными. Как
известно [30, 31], экспериментальные кинетические данные всегда

определяются с некоторой ошибкой. Поэтому, взяв какой-либо

критерий минимизации, мы будем получать разные численные

значения констант при обработке результатов разных экспериментов.
Чем менее точен эксперимент, тем больше будет разброс констант,

определяемых по данным нескольких серий опытов. В таких

условиях естественно потребовать, чтобы величины констант в среднем

совпадали с их истинными значениями. Другими словами,
математическое ожидание кинетических параметров должно быть равно
их истинным значениям. Это свойство называется несмещенностью.

С другой стороны, необходимо, чтобы разброс констант,

определяемых по разным опытам, был бы наименьшим. Оценки
констант, дисперсии которых больше минимально возможной

величины (определяемой исключительно точностью эксперимента), будем
называть неэффективными.

Информация о величинах констант скоростей содержится в

каждой опытной точке, поэтому для наиболее полного извлечения

информации определение параметров нужно проводить по

результатам всех опытов. Если оценка параметра включает всю

информацию относительно этого параметра, то такую оценку принято

называть достаточной [32]. Например, значение константы скорости

реакции первого порядка, полученное усреднением ряда
значений констант, соответствующих отдельным опытам, является

достаточной оценкой, в то время как оценка этой константы только

со времени полупревращения ^/2

таковой не является.

Часто требуется сравнить значения одних и тех же

кинетических параметров, полученных разными авторами. В такой

ситуации необходимо применять для сравнения статистические

критерии [13], так как параметры определяются с ошибкой. Почти все

статистические критерии основаны на предположении о том, что

сравниваемые величины распределены по закону Гаусса. Исходя
из этого удобно, чтобы определяемые на ЭВМ константы скоростей
имели бы гауссовское (нормальное) распределение.

Таким образом, нужно считать оптимальными такие оценки
кинетических параметров, которые являются: а) несмещенными;

б) эффективными; в) достаточными; г) нормально
распределенными.

В книге Крамера [33] для общего случая оценок неизвестных

параметров по опытным данным показано, что оценки будут обладать
свойствами б) и в), если их определение производить в соответствии

с принципом максимального правдоподобия, предложенным в
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1912 г. Фишером [34]. При этом свойство г) будет выполняться

асимптотически, т. е. распределение параметров будет
приближаться к гауссовскому по мере увеличения числа

использованных опытных данных. В общем случае применение принципа

Фишера может дать и смещенные оценки параметров, однако в

задачах определения констант скоростей получаются, как это показано

Боксом [35], несмещенные оценки.

3. Принцип максимума правдоподобия

Принцип максимума правдоподобия в применении к задачам

количественного изучения кинетики формулируется следующим

образом. Наилучшими оценками кинетических параметров,

соответствующих решению заданной системы уравнений кинетики,
являются такие оценки, которые обеспечивают наибольшую
вероятность получить в результате подстановки условий эксперимента
именно те значения концентраций, которые и были фактически
получены.

Вероятность получить опытные значения концентраций (если
опыты проведены независимо) определится выражением

*

dP = L(c,b)dc, (4)
где L (с, 6) — так называемая функция правдоподобия,

N

L(c,Q)=l[p(cu,Q). (5)
U=l

В выражениях (4), (5) с представляет собой iV-компонентный

вектор опытных величин концентраций <с = {си} (и = 1, 2, ..., TV);
в = {в^} (i = 1, 2, ..., р) — вектор кинетических параметров,

составляющими которого могут быть предэкспоненциальные
множители, энергии активации, порядки реакций; р (си, 6) —
плотность вероятности опытных значений концентраций,

соответствующая условиям и-то эксперимента.
Из формул (4), (5) следует, что максимуму вероятности

соответствует максимальное значение функции правдоподобия. В

прикладных задачах обычно максимизируют In L (с, 6), что более

удобно. Часто принимается [37], что получаемые опытным путем

данные распределены по нормальному закону. В таком случае
будем иметь

р (с, 6) = (2яа2и)-''°ехр {- К-ДРИ' } ,

= 1,2,..., АО,

* Обобщение на случай, когда в эксперименте замеряются концентрации
или скорости образования нескольких компонентов, несложно (см. [36]).



где са (6) — концентрация реагента, вычисленная для условий и-го

опыта при заданных значениях параметров 6; $1 — дисперсия,
характеризующая рассеяние экспериментальных данных.

Учитывая выражение (5), получаем следующее выражение
для функции правдоподобия:

N

In L (с, 6) = const ^-2з«2 [с„ - си (б)]2. (7)

Из (7) следует, что максимуму правдоподобия соответствует

минимум взвешенной суммы квадратов отклонений вычисленных
значений концентраций от опытных, т. е. принцип Фишера
сводится к известному методу наименьших квадратов. В качестве

весов служат обратные значения дисперсий. Так как почти всегда

дисперсии неизвестны, их приходится заменять выборочными
значениями Su- В этом случае плотность распределения опытных

данных будет характеризоваться законом Стыбдента [33].
Функция правдоподобия представится в виде

4 f ^
. (8)

гДе /u — число степеней свободы выборочной дисперсии si.
В практической работе, однако, общепринято пользоваться

методом наименьших квадратов и в тех случаях, когда отсутствуют

сведения не только о теоретических (генеральных) дисперсиях
а2, но и о выборочных s2. Насколько оправдан такой подход,
неизвестно. Между тем степень приближения можно оценить,

воспользовавшись расчетом вероятностных моделей некоторых простых
случаев (например реакции первого порядка). Несмотря на

определенный интерес данного вопроса, он до сих пор никем не

рассматривался. Следует заметить, однако, что если справедливо
предположение о нормальном законе распределения опытных

концентраций, то оценки кинетических параметров, получаемые

максимизацией выражения (7), будут несмещенными, достаточными и

асимптотически нормальными и в тех случаях, когда вместо а2 в

(7) подставляются значения s2. Что касается дисперсии
определяемых параметров, то, исходя из общей теории максимального

правдоподобия [33], можно утверждать, что оценка неизвестных

параметров 6 по формуле (8) будет более точна, чем по (7).
В кинетических исследованиях диапазон превращений

реагирующих веществ обычно стараются поддерживать довольно
большим [31]. При этом концентрации отдельных компонентов могут
изменяться в ходе реакции в несколько раз. Трудно ожидать,
чтобы в этих случаях абсолютная величина рассеяния

экспериментальных данных в каждой точке была одинакова. Опытные данные
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как правило, свидетельствуют о том, что остается примерно

одинаковой относительная величина ошибки, в то время как

абсолютное ее значение зависит от величины концентрации.
На рис.28 приведен график, построенный по данным,

полученным Фейгиным при изучении пиролиза метана в трубчатом
реакторе [20, 38], который отражает подобную зависимость. Как

Рис. 28. Зависимость среднеквад-
ратической ошибки определения
концентрации метана s (СЩ) от

величины его концентрации [20,
38]

5 10 15

[СНДобъемйХ

видно из рис. 28, величина среднеквадратической ошибки
увеличивается с ростом концентрации реагирующего вещества.
Отношение s (с)/с (где с — концентрация, s (с) — ее ошибка)
принято называть коэффициентом вариации [37]. Если коэффициент
вариации постоянен, это указывает на наличие логарифмически
нормального распределения [32, 37, 39]. При этом максимуму
правдоподобия будет соответствовать минимум суммы квадратов

отклонений логарифмов концентраций. Однако при изучении
кинетики пиролиза метана применялся обычный метод наименьших

квадратов [20]. В этой же работе приводятся также результаты

других авторов, применявших при обработке данных по пиролизу

СН4 логарифмически нормальное распределение. В этом случае

удалось получить кинетические параметры, более близко

отвечающие теории. Учитывая зависимость s (CH4) от [CHJ,
приведенную на рис. 28, такой вывод не представляется неожиданным.

Сказанное здесь подтверждается также работой [24], где для

нахождения наиболее вероятных значений констант применялся

логарифмический вариант метода наименьших квадратов, так как

было показано постоянство коэффициента вариации.
В литературе по теории вероятностей [40] подчеркивается,

что использование «нормальной техники» в случае
логарифмически нормального закона распределения может привести к

существенным ошибкам, особенно при обработке небольшого числа

экспериментов. В статье [41] приводится перечень некоторых
критериев, соответствующих различным распределениям, которые
могут встретиться в экспериментальной работе. Другие примеры
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применения принципа максимального правдоподобия для
определения констант скоростей химических реакций приведены в

работах [42, 43].

4. Локальные методы поиска констант скоростей

После того как выбран критерий оптимальности

кинетических параметров, зависящий, как подчеркивалось выше, от вида

распределения опытных значений концентраций, можно перейти к

определению таких величин параметров, которые обращают
выбранный критерий в минимум (или максимум). В общем случае
может быть несколько экстремумов критерия. Задача будет
заключаться в отыскании координат экстремума, наибольшего по

абсолютной величине.

Для решения таких задач разработаны различные локальные

и нелокальные методы поиска (см. обзорные статьи [7, 44, 45] и

книги [46,47]). Однако пока еще не все эти методы нашли

применение для обработки кинетических данных. Поэтому здесь будут
рассмотрены лишь наиболее распространенные методы поиска

констант — вначале локальные, затем нелокальные. Для
удобства изложения мы будем предполагать, что опытные данные

распределены по нормальному закону с одинаковой дисперсией. В
этом случае принцип максимума правдоподобия сводится к

методу наименьших квадратов. Наиболее вероятными будут такие

значения параметров, которые минимизируют сумму квадратов
отклонений вычисленных величин концентраций от их опытных

аналогов
*

N

£(6) = 2 1си~Си(Ъ)]\ (9)

где S (6) — сумма квадратов отклонений; си — концентрация

компонента в и-м. опыте (и = 1, 2, ..., N); си (6) — вычисленное

значение концентрации для условий и-ro опыта, зависящее от вектора

кинетических параметров 6 == {6;}, где £ = 1,2, ..., р. Поскольку
схема реакции и опытные данные являются заданными, си (6) и

S (6) будут функциями только кинетических параметров 6.

Рассмотрим теперь методы определения локального

минимума функции S (6), начав с градиентных методов.

а) Метод крутого спуска

Градиентные методы в отличие от простых методов,
описанных выше, основаны на использовании сведений о наклоне

поверхности критерия в данной точке. Движение к минимуму суммы

квадратов отклонений производится по направлению наибольшей

* Если в эксперименте известны концентрации нескольких веществ, то

суммирование в выражении (9) необходимо выполнить для всех этих веществ.
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крутизны поверхности S (6), которое противоположно
направлению градиента:

^ (10)
г=\

г

где 69^ — единичные векторы в направлении координатных осей.

Производные OS (Ь)/двг в формуле (10) обычно находятся

численно, для чего каждый из параметров 9; (i = 1, 2, ..., р) меняется

поочередно на некоторую небольшую величину (например AQt =
= (0,05 — 0,1)9^). Производные заменяются величинами Д£ (6)/Д9г-.
Как показано Лапидусом и сотр. [48], такой подход к определению

производных неэффективен, поскольку параметры варьируются
лишь в одну сторону. Авторы [48] предлагают вычислять

производные с помощью так называемых факторных планов (см.,
например, [49]). Более точное определение производных dS (6)/90|
позволяет сократить общее число необходимых вычислений [48].

Можно найти эти производные иначе:

( (11)

(/-1,2,...,/?),
где

(12)

Если кинетика исследуемых реакций описывается системой

обыкновенных дифференциальных уравнений, то эту систему
можно дополнить дифференциальными уравнениями для производных

%1=/и|{2и(в),в} (13)

(и = 1,2, ... ,7V; / = l,2,...,p)

с начальными условиями xui
= 0 [50]. Правые части уравнений

(13) находят согласно правилам, указанным в работе [50] и

подробно описанным на стр. 66. Интегрируя (13) совместно с

уравнениями кинетики, мы получаем непосредственно значения

производных дси (6)/d9j. Подставляя их в выражение (11), а (11) в

(10), находим направление и величину градиента функции S (6).
Такой способ вычисления производных применялся в ряде работ
по изучению кинетики сложных химических реакций [10, 51—53].
Применение факторных планов для этих целей описано в работе
Бокса [54] на примере двух последовательных мономолекулярных

реакций
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В этой работе, а также в книге [49] дается описание

последовательности вычислений, необходимых для движения по линии крутого

спуска. Последнее производится до тех пор, пока S (8)
снижается.

При увеличении S (0) на каком-либо шаге интерполяцией
определяются координаты наиболее низкой точки, в которой
необходимо найти новое направление движения. Ход спуска ясен из

рис. 29, иллюстрирующего случай двух параметров. Окончание

Рис. 29. Движение к минимуму

суммы квадратов отклонений S (9^ 02)
методом крутого спуска

Цифры на кривых —номера
последовательных шагов спуска; т

— точки минимума на

направлениях крутого спуска; М —точка

минимума S (0ь 62)

расчетов определяется величиной производных OS (0)/d0j.
Различные подходы к машинной реализации такой проверки

обсуждаются в работах [51, 55, 55а, 56].
Если число отыскиваемых параметров невелико (р ^ 4), то

для локализации минимума применяют квадратическую

аппроксимацию S (6) по 6 [10, 54].
Метод крутого спуска, впервые примененный к задачам

химической кинетики в 1956 г. [54], использовали для изучения

кинетики процессов окисления бутенов в малеиновой ангидрид [18],

получения фталевого ангидрида и каталитического риформинга
бензиновых фракций нефти [21]. Это метод применяли также для

определения констант устойчивости медных комплексов ряда дипеп-

тидов [24].

б) Метод градиента и его модификации.
Основное отличие метода градиента от метода крутого спуска

заключается в том, что определение направления движения к

минимуму S (6) производится на каждом шаге спуска. При этом

составляющие градиента, как правило, нормируют

(14)
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Последовательные значения параметров Qt находятся по

формуле

еГ+1 = бГ —атС^ (15)

где а — шаг в направлении спуска; т — номер итерации. Выбор
шага а обсуждается в статьях [51, 55]. Для ускорения сходимости

итераций в условиях плохо выраженного минимума предложен

ряд модификаций, аналогичных методу оврагов [51, 55].
Градиентные методы разрабатывались в основном в Институте физической
химии им. Карпова и были применены для изучения кинетики

окислительного аммонолиза пропилена [16, 29, 55] и гидрирования
бензола [22, 23, 57].

В работе [58] рассмотрена модификация метода градиента,

которая, по данным [48], обеспечивает более быструю сходимость

процесса вычислений. При этом составляющие градиента находят по

формуле

Ъ = (1 + е?) ЦЮ {| [(1 + в!) ^]2}""2 (16)

(« = 1.2 р).

Выбор шага спуска производится автоматически, в

зависимости от угла между последовательными направлениями движения

(см. [58], а также стр. 103). Эта модификация метода градиента
была использована для определения констант скоростей
изомеризации и окислительного дегидрирования бутенов в дивинил [59,
60]. Она применялась также для осуществления градиентных
спусков при изучении методом оврагов кинетики радиационного
изотопного обмена дейтерия с гидроксильными группами силикагеля

[61] и кинетики превращения смеси 7?грет-бутилфенолов и фенола
[62]*.

Применяя градиентные методы поиска констант скоростей
на аналоговых вычислительных машинах, приходится находить

направление движения вручную [18]. Иногда обсуждение
направления очередного шага проводится физико-химиками и при
вычислениях на цифровой машине [63]. Такой подход целесообразен
лишь в тех случаях, когда на определение всех производных
OS (Q)/dQi затрачивается значительное машинное время (•— 1 час).

в) Метод сопряженных градиентов.

Направление спуска на (т + 1)-м шаге можно выбирать в

зависимости от того, какое направление было на предыдущем
шаге т. В методе сопряженных градиентов вектор очередного на-

* См. стр. 105 настоящей книги.
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правления движения Dm выбирается таким образом, чтобы

вектор градиента в (га + 1)-й точке был перпендикулярен Dm

2>m#m+l = 0, (17)

где Т обозначает транспонирование.

Вектор Dm находится по формуле
I) G II2

&т = — &m + II
с

Ш

||2 Ап-ь (18)
II ^m-ill

где ||6r||—длина вектора G. В начальной точке принимают Do=— 6г0.
Последовательные значения параметров вг находятся по

формуле

Q?+l=Q? + anD?(i = l,2,...,p), (19)

где а выбирается таким образом, чтобы удовлетворить условию

(17).
Метод сопряженных градиентов обладает тем

преимуществом, что здесь используется вся информация о Предшествующих
итерациях, поскольку направление движения определяется
рекуррентным соотношением (18). Недостатком этого метода является то,

что при значительном удалении начальной точки поиска 0° от

точки минимума в процессе вычислений по уравнению (18)
происходит накопление ошибок, сказывающееся на быстроте
сходимости метода. Другой недостаток заключается в трудности

выбора единичного шага а в выражении (19). Метод
сопряженных градиентов не нашел такого широкого применения, как метод

крутого спуска и метод градиента. В литературе имеется пример

использования этого метода для обработки данных ИК-спектров
[64]. Метод сопряженных градиентов сравнивался также с методом

модифицированного градиента [58] при поиске констант скоростей
реакций окислительного дегидрирования бутенов [59, 60].
Константы, определенные этими двумя методами, оказались близкими друг
к другу.

г) Метод нелинейных оценок.
Л

Разложим в выражении (9) си (6) в ряд по 0 в окрестности

некоторой точки 6°, ограничившись при этом линейными членами
V

си (6) - си (во) + 2 (е?~ 9*) 4i (20)

где

(21)
о

_
дсу (6)

Xui ~~

~Щ~
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Подставляя выражение (20) в (9), приходим к обычному методу

наименьших квадратов относительно неизвестных нам разностей

Д0. = в?-в,:
N V 2

S(t) = Sk-S Дв|4|) , (22)
u=l

^
г=1

где

zu = cu-cu(Qo). (23)

Значения Л0г, обращающие (22) в минимум, находятся
решением системы линейных алгебраических уравнений, получаемой
дифференцированием (22) по Д0^ и приравниванием нулю

производных. Решение этой системы удобно представить в матричной
записи:

Д6 = (XTX)-1XTZ, (24)

где Д6 — р-компонентный вектор разностей A0j = 6? — Qt (i =

=1, 2, ...,р); X — (iV Xp) — матрица производных (21); Z — N-
компонентный вектор отклонений (23) опытных концентраций от

вычисленных в точке 6°; Т — знак транспонирования.
Если бы выражение (20) выполнялось точно, тогда вектор

А0, полученный решением (24), характеризовал бы расстояние
от исходной точки 6° до точки минимума 6. В практических
задачах в разложении (20) может оказаться необходимым учет

квадратичных членов. В этих условиях вектор Д6, вычисленный по

формуле (24), может и не быть направленным в сторону
минимума. Можно показать, однако, что Д6 будет направлен в общем
случае в сторону крутого спуска [65]. Направление крутого
спуска противоположно направлению градиента, компоненты которого

определяются выражением (10). Вектор антиградиента запишется

в виде

— G = 2XTZ. (25)

Покажем, что Д0 имеет положительную проекцию на

направление антиградиента

Д6Т (— G) = — GTAb > 0. (26)

Из формулы (24) имеем

Подставим это выражение в (25), затем транспонируем вектор

антиградиента и его значение введем в (26)

— GTAQ = 2ZTXAQ + 2АЬТХТ ХД6 - 2 (ХД0)т(ХД6) > 0. (27)

4 Заказ Ni 1454 <#



Равенство в выражении (27) достигается лишь в случае, когда
все составляющие вектора Аб равны нулю, т. е. когда начальная

точка 6° совпадает с точкой минимума. В противном случае,
двигаясь в направлении А6, можно добиться снижения суммы

квадратов отклонений.

Таким образом,

6Г+1 = 6Г + awA6i? (28)

где а выбирается из условия выполнения формулы (20).
Практические рекомендации по выбору а приводятся в

работах [66—71]. Сходимость итераций (28) к ближайшему от 6°

минимуму S (6) показана Хартли [66]. Для доказательства
сходимости метода потребовалось существование первых и вторых
производных iS (6) по 0j и непрерывность S (6). Недавно было показано

[72], что итерации (28) сходятся к минимуму со скоростью

геометрической прогресии. По оценке Бокса [73], применение этого

метода сокращает число вычислений в сравнении с градиентными
методами в среднем в (р-\-2)/2 раз, где р

— число определяемых
параметров. Ясно, что чем ближе зависимость (20) к линейной, тем

быстрее будет достигнут минимум. В связи с этим приобретают
интерес такие преобразования параметров

Ф = Ф(6), (29)

при которых разложение в ряд

V

(30)

справедливо для более широкого интервала Д6. Например, если

отыскиваются параметры уравнения Аррениуса для константы

скорости

& = G!exp(— 62/Г), (31)
где

0Х = Ло, 92 = E/R,

то целесообразно ввести следующие преобразования [74]

Ф1 = в1ехр[-в1Т-1]1
ф2 - е2 J

где Т — среднее значение температуры.

Преобразование параметров (32) улучшает вид поверхности
S (Ф) [10], что приводит к сокращению вычислений при
использовании любого градиентного метода. Общая теория
преобразований (29) еще только разрабатывается [75, 76].
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В литературе описаны модификации метода нелинейных

оценок как упрощающие программирование [77], так и

усложняющие его [69].
Хотя описываемый метод известен сравнительно давно [78]

и для простых в кинетическом отношении задач использовался еще

в 1950 г. [79], но вследствие вычислительных трудностей он не

находил широкого применения. Лишь с появлением ЭВМ метод
нелинейных оценок получил распространение при решении
разнообразных задач, в том числе и задач нахождения кинетических

параметров [73]. Описанным методом была изучена кинетика

целого ряда процессов: окисления нафталина [28], изомеризации
м-гексана [80], синтеза аммиака [81], окисления метана [82, 83]
и др. [12, 26, 27, 53, 84—88]. Программа этого метода применялась
также для замены градиентных спусков в методе оврагов (см. стр.

107).
Имеется целый ряд публикаций по применению метода

нелинейных оценок в других областях физической химии. Например,
в работах [89—91] этим методом изучали различные свойства

полимерных материалов, в [92—94] находили константы образования и

устойчивости комплексов различных металлов. Метод нелинейных
оценок применяют для расшифровки спектров ЭПР [95—97],
ЯМР [98], масс-спектров [99], колебательных спектров [100],
и других целей [101—103]. Метод начали применять также и при

изучении физической кинетики. Так, в работе [104] он был
использован для определения сечений захвата электронов.

д) Метод Ньютона — Рафсона.
Если в разложении (20) сохранить члены второго порядка,

то можно добиться более высокой скорости сходимости (т. е.

потребуется меньшее число итераций для достижения минимума 5(6)).
Однако при этом возрастает время, требующееся для вычисления

вторых производных

щщ., \Ц- 1, Z, . ..,iV, iyj- I, Z, . .
., р) .

Этот метод может оказаться целесообразным в тех случаях, когда

соответствующие производные можно найти аналитически [70,
105, 106]. Формулы для определения величины поправок Л6,
необходимых для осуществления итераций, приведены в работе
[70].

е) Метод Флетчера — Пауэлла.
В статье [56] предложен оригинальный метод определения

локального минимума сложной функции многих переменных,
основанный на максимальном использовании информации о

характере поверхности S (6), получаемой в процессе итераций.

Предполагается, что в окрестности 0° функцию £ (6) можно достаточно
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надежно аппроксимировать квадратичным полиномом

2=1 i=i i=i

или в матричной записи

S (6) = £0 + ЛТЬ + i 6Т1*6, (33)

где А — вектор-столбец первых производных OS(Ь)/двг (i = 1, 2,...
..., р); Б — матрица вторых производных 02S (Q)/dQidQj (i, j =
= 1, 2, ..., p).

Вектор градиента суммы квадратов записывается в виде

G=A+Bb. (34)

Обозначим через в* координаты минимума. Тогда, если квадрати-
ческое приближение (33) выполняется точно, расстояние до

минимума от произвольной точки 6° будет равно

в*_ео=,_Б-16?. (35)

Если же (33) выполняется не точно, необходимо строить
итерационный процесс. Флетчер и Пауэлл [56] предложили не вычислять

матрицу вторых производных В на каждом шагу итераций, а,
задаваясь вначале некоторой произвольной квадратной
матрицей jH°,менять ее в процессе движения к минимуму таким образом,
чтобы в пределе она стремилась к обратной матрице вторых

производных В"1. Авторы [56] показали, что

где*
Т

toy У Ну

—

скаляр, обеспечивающий минимум S (6) на направлении

Очередное приближение находится по формуле

= Ь +(д. (37)

В качестве Н° рекомендуется брать единичную матрицу [56].

Процесс вычислений на шаге m следующий. Находим градиент

j-^m лгп , TT7n(\m' /f4Q\
Ъ- = А. -\- г± и , (до)

* Номер итерации 7?г в обозначениях Н, Q, R п у опущен.



для чего нам необходимо вычислить составляющие вектора А

(первые производные S (6) по 6). Варьируем далее а^> 0 таким

образом, чтобы параметры, рассчитываемые по формуле

6 = 6m — aHmGm, (39)

приводили к минимуму S (6). На этом этапе возможна квадратичес-

кая или кубическая аппроксимация S (6) по а [56]. Завершается
этот этап вычислением 6m+1 по формуле (37). Далее находим Crm+1,
заменяя в формуле (38) индекс т на т + 1. После этого

рассчитываем Нтп по (36).
Такая процедура обеспечивает устойчивость и квадратичес-

кую сходимость итераций. Показано [56], что если выражение (33)
выполняется точно, то, начав итерации с выбора единичной
матрицы Jff°, их удается закончить за р итераций (р — число

определяемых параметров).
Основным недостатком метода является сложность

программирования, однако при наличии стандартных программ

перемножения и сложения матриц он может найти более широкое

применение, чем метод нелинейных оценок. В работе [52] метод

Флетчера — Пауэлла был применен для определения констант

скоростей реакций типа

!

Представляет интерес использование программы этого метода

для определения координат локальных минимумов в методе

оврагов.

ж) Другие поисковые методы

Кроме описанных выше методов, при отыскании кинетических

параметров находят применение (пока ограниченное ) следующие
методы: метод непрерывного продолжения по параметру [10],
метод случайного поиска [17], метод параллельных касательных

[27], специальный метод исследования характера склонов

поверхности S (6) [107] и другие методы [108].

5. Нелокальный метод (метод оврагов)

Было замечено [14, 51, 55] что в большинстве случаев при

подборе констант локальными методами не удается точно

фиксировать положение минимума из-за наличия у функции «оврагов»
со слабым наклоном, т. е. областей очень медленного изменения

функции. В результате те параметры, варьирование которых
слабо влияет на изменение суммы квадратов, находятся неточно.

Для преодоления этих трудностей разработан ряд модификаций,
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приближающих локальные методы к нелокальным методам поиска

[51, 55]. Более удобным в этом отношении является метод оврагов,

предложенный Гельфандом и Цетлиным [47, 109]. Процедура этого

метода такова, что он позволяет не только определить координаты

локального минимума, но и обнаружить все минимумы в заданной
области изменения параметров. Наличие оврагов характерно не

только для задач большой размерности, но и в случаях, когда по

опытным данным необходимо определить небольшое число констант.

Так, например, при обработке кинетических данных по броми-
рованию бутендисульфоната [110] было обнаружено, что из двух

констант, входящих в уравнение кинетики

HJ*1 = kl [ВС] [Вг2] + к2 [ВС] [Вг8]«,_ HJ

константа скорости к2 оказывает малое влияние на

минимизируемую сумму квадратов. Разброс значений к2 составлял при этом

150-200%.
Таким образом, множество констант скоростей реакций,

протекающих в какой-либо химической системе, можно почти всегда

разбить на два подмножества: 1) константы, которые оказывают

существенное влияние на сумму квадратов отклонений, 2)
константы, изменение которых приводит лишь к относительно небольшому
изменению целевой функции. При этом сумму квадратов

отклонений вычисленных значений концентраций от экспериментальных
можно назвать, согласно терминологии Гельфанда и Цетлина
[109], «хорошо организованной» функцией. Для минимизации
таких функций этими авторами разработан эффективный метод
нелокального поиска, названный ими методом оврагов [109].

Этот метод нашел широкое применение для обработки
данных рентгеноструктурного анализа [47]. В литературе имеется

также пример использования метода оврагов Гельфанда — Цетлина при
оптимизации контактных аппаратов для окисления двуокиси се-

х>ы [111].
Как отмечалось Гельфандом [47], для успешного применения

этого метода важно не знание самой структуры минимизируемой
функции, а лишь факт ее «хорошей организации». Поэтому было

интересно расширить область применения метода оврагов,
предложенного в работе [109], применив его к задачам кинетики сложных

химических систем. Необходимо отметить, что на возможность

определения констант скоростей химических реакций методом

Гельфанда и Цетлина указывалось ранее разными авторами [21,
55]. Островским с сотр. [51, 55] разработан ряд алгоритмов,

улучшающих сходимость процесса минимизации в условиях оврагов.

Однако, судя по публикациям [29, 55а], решение кинетических

задач по этим алгоритмам приводит к значительным затратам
машинного времени. Авторы [29] указывают также, что

использованная ими программа [55] в ряде случаев не приводила к достаточно
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точной локализации минимумов, что являлось причиной
нарушения аррениусовской зависимости констант скоростей от

температуры. В отличие от нее процедура Гельфанда — Цетлина свободна
от этого недостатка, что было показано нами при расчете ряда

механизмов в искусственно построенной задаче (см. стр. 149) и

требует меньших затрат времени ЭВМ.

Для реализации метода оврагов Гельфанда — Цетлина в

кинетических задачах нами составлена и опробована стандартная
программа для ЭВМ типа М-20 [61]. Программа работает
следующим образом.

1) Задаются приближенные значения тех констант скоростей,
которые нужно найти по опытным данным *:

Если некоторые константы известны точно, то они фиксируются и в

процессе счета не меняются.

2) Производится градиентный спуск к локальному минимуму

суммы квадратов отклонений по подпрограмме, основанной на

алгоритме модифицированного метода градиента, предложенном в

работе [58]. При этом значение каждой константы на (т + 1) шаге
спуска находится по формуле

кГ1 - к? - *mG7 (i = 1, 2,. .
., р), (40)

где а — шаг в направлении, обратном градиенту суммы квадратов

отклонений; Gt — нормированная величина 2-й составляющей

градиента

Обычно производные суммы квадратов dS (к)/дкг берутся с

весами, равными единице [51, 55]. Введение же весов 1 f k\
улучшает характер поверхности S (к), приводя к сокращению

общего числа итераций [48].
Величина градиентного шага выбирается автоматически в

зависимости от угла ф между последовательными направлениями

движения:

v

coscp= 2 GTGT'\ (42)

* При изучении кинетики в неизотермических условиях константы скорости

представляются некоторой функцией температуры (например в виде

аррениусовской зависимости), поэтому необходимо определять несколько

кинетических параметров для каждой константы скорости. Это приводит к

увеличению размерности задачи, не меняя по существу программы поиска.
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Если cos ф <0, то

ат = О^ба™-1. (43)

Если же cos ф > 0, то шаг вычисляется по формуле

). (44)

Коэффициенты dx и d2 зависят от характера задачи. Мы приняли

dx = 0,5 и d2 = 1 в соответствии с рекомендациями [58].

Рис. 30. Последовательность точек графического изображения
расчета по методу оврагов

х — точки отхода; N
— точки спуска; h — овражный шаг

3) Градиентный спуск считается законченным, если все

произведения a iGt станут на каком-либо шаге меньше некоторой
заранее фиксированной величины Ati называемой градиентной
пробой [47]. Точку спуска обозначим Nn, ее координаты

— Х(П)

(рис. 30).
4) В значение одной из найденных констант вносится

сравнительно большое возмущение (например 30—40%), и с новым

набором констант к{п+1) производится градиентный спуск, в

результате которого мы получаем очередную точку спуска Nn+1 с

координатами $(n+i) (рис. 30).
5) Через точки Nn и Nn+X проводится прямая, на которой на

расстоянии овражного шага h от Nn+1 находится точка А(П+2),
называемая точкой отхода [47]. Координаты этой точки вычисляются

по формуле

-ftp, (45)

Где р
— единичный вектор прямой, проходящей через точки %(П)

и £(n-ri). Дальнейший процесс движения по оврагу ясен из рис. 30.

Как подчеркивает Гельфанд [47], создание полностью

автоматизированной программы счета является нецелесообразным, так

как это привело бы к значительному увеличению затрачиваемого

машинного времени. Поэтому вычислительная работа должна

доводиться совместно с физико-химиком, который ставит задачу



изучения кинетики конкретной химической реакции. В процессе
счета, носящего, как правило, игровой характер [47], оказывается

необходимым вмешательство исследователя, который, используя
свою интуицию и опыт, может оптимальным образом менять

главные параметры оврага—величины градиентной пробы и овражного
шага. Однако в тех случаях, когда исходные приближения
кинетических параметров хорошо известны, можно автоматически

отключать программу счета при движении оврага в сторону

возвышения. Такая модификация предусмотрена в одном из вариантов
составленной нами программы. Кроме того, оказалось

целесообразным иметь другие варианты программ. Например, для грубого
определения областей локальных минимумов нами используется

программа, в которой при осуществлении градиентного спуска

направление движения находится не на каждом шаге, а лишь при

возрастании суммы квадратов отклонений. В задачах большой

размерности (при числе констант р ^> 3) эксплуатация такой

программы позволяет существенно снизить время вычислений.

Методом оврагов нами изучалась кинетика радиационного

изотопного обмена дейтерия с гидроксильными группами силика-

геля (см. [61], а также стр. 138), кинетика аллильной

полимеризации в присутствии хлористого цинка, кинетика разложения

метана в условиях адиабатического сжатия и других процессов.

Приведем здесь в качестве примера определение методом

оврагов констант скоростей реакций

где Ах, А2, В и D - соответственно и-, о-, 2,4-дитретичные бутил-
фенолы и фенол.

Исходная смесь состояла из В и D в эквимолекулярных
количествах. Обработка полученных данных методом градиента

показала, что к± и к2 определяются сравнительно хорошо независимо

от того, из какой точки пространства констант скоростей
производится спуск в точку минимума суммы квадратов, в то время как

к3 и &4 определяются плохо. Это видно из данных табл. 8.

Для определения точных значений констант к3 и /с4 из обеих
начальных точек были пущены овраги (первый овраг показан на

рис. 31), давшие значения kt (i =1, 2, 3, 4), приведенные в табл. 9.

Приведенные данные свидетельствуют о высокой

эффективности метода оврагов в применении к задачам количественного

изучения химической кинетики. В самом деле, среднее
относительное отклонение благодаря использованию метода оврагов

снизилось в 2 раза по сравнению с достигнутым методом градиента.
Удалось получить более точные значения констант скоростей
реакций Зи*4, о чем свидетельствует близость их величин, найденных
при пуске оврагов из разных точек.
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Таблица 8

Определение констант скоростей (fcXlO4, л/моль-мгш) методом

градиента при t = 100 °С

Точка

Первая начальная

Локального минимума

Вторая начальная

Локального минимума

X = i

40

16

80

17

г = 2

10

7

20

9

г = 3

4

5

10

12

i = 4

4

6

10

16

Сумма
квадратов
отклонений, хю3

5,27

7,09

Среднее
относительное
отклонение,

%

5,5

6,4

Таблица 9

Определение констант скоростей л/моль*мин) методом оврагов

№ оврага 7,-

19,
19,

7
7

l

10

11

и

,7

,1

12

17

«,

,3
,5

42,
44,

0
5

Сумма
квадратов

отклонений

Среднее
относительное

отклонение, %

2,54-Ю~3

3,4
О О

о,о

На рис. 32 приведено сопоставление опытных величин

концентраций с вычисленными интегрированием на ЭВМ системы

обыкновенных дифференциальных уравнений, описывающих кинетику

указанных выше реакций. Для расчета брали значения констант

скоростей, найденные при пуске первого оврага (табл. 9).
Совпадение расчетных кривых с экспериментальными точками

указывает на широкие возможности использования метода оврагов для

определения констант скоростей сложных химических реакций.
Следует подчеркнуть, что метод оврагов является

нелокальным методом поиска. Другими словами, в районе начальных

значений констант определяются все (если их несколько) минимумы

суммы квадратов отклонений, так что имеется возможность найти

координаты наиболее глубокого минимума. Это обстоятельство

гарантирует единственность определяемого набора констант в тех

случаях, когда по каким-либо причинам неизвестны близкие к

истинным начальные величины параметров.
За рубежом широкое распространение получил метод

определения констант скоростей, известный под названием метода
нелинейных оценок (см. стр. 96). Являясь локальным методом

поиска, он приводит в сравнении с методом градиента в среднем к
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0,5 (р + 2)-кратному сокращению числа вычислений [73],
необходимых для определения локального минимума суммы
квадратов отклонений (р — число определяемых кинетических

параметров).
Мы предприняли попытку создания программы метода

оврагов, в которой для выделения локальных минимумов

использовалась бы подпрограмма метода нелинейных оценок. Проверка
этого варианта программы осуществлялась путем обработки дан-

ных по превращению эквимолекулярной смеси о- и тг-третичных

бутил-фенолов в присутствии 0,5 вес. % H2SO4 при 120° С. Для
сокращения времени отладки программы производили подбор только

трех констант скоростей. Стадия

при этом не учитывалась.

Результаты расчетов обычным и модифицированным методом

оврагов сведены в табл. 10.
Из приведенных данных видно, что для локализации

минимума суммы квадратов отклонений обычным методом оврагов
потребовалось три градиентных спуска с общим числом итераций N —

= 25. Применяя модифицированный метод оврагов, удалось
найти минимум всего за четыре итерации, причем положение минимума

определялось несколько точнее. Это легко понять, поскольку в

методе нелинейных оценок сумма квадратов отклонений пред-

/ц //7, л/моль мин

8

/гу //// л/миль мин

Рис. 31. Графическое
изображение расчета по методу оврагов в

координатах к3
— &4

Цифры на прямой
— значения суммы

квадратов отклонений, умноженные
на 103

Рис. 32. Сопоставление опытных
и расчетных данных по
превращению смеси mpe/n-бутилфенолов и

фенола
Точки — экспериментальные данные

сплошные линии — результат расчета

1 — пара-; 2 — орто-; 3—2,4-ди-

mpem-бутилфенолы; 4 — фенол
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Таблиц а 10

Определение констант скоростей (к X Ю4, л/моль-мин) обычным
и модифицированным методами оврагов

Точка

Начальное приближение

I
II

III
IV

М о д и ф
V

23 16

Обычный

24,6

29,7

35,2

40,2

ИЦИ1[

27,4

16,

15,

13,

12,

6

3

6

9

И

Сумма квадратов
отклонений

1,45.

метод

9,0

10,6

12,4

13,8

юванный

15, 9 10,1

0,81

0,74

1,30

2,22

метод

0,68-

10"3

• Ю-3

К}"3

10~з

lQ-з

Ю-3

Число
итераций

—

12

9

4

7

4

ставляется квадратической функцией констант скоростей.
Естественно, что координаты минимума находятся при таком подходе
точнее.

Таким образом, разработанная серия программ,
реализующих различные варианты метода оврагов Гельфанда — Цетлина,
позволяет решать задачи количественного изучения кинетики

сложных химических реакций. Специфика применяемого метода

такова, что при заданной схеме реакций обеспечивается

единственность определяемого набора констант скоростей. Это условие
является весьма важным при решении задачи о выборе наиболее
вероятного механизма реакции из нескольких возможных механизмов.

6. Оценка ошибок констант скоростей,
рассчитанных на ЭВМ

Как уже отмечалось, наличие ошибок в экспериментальных

данных приводит к тому, что определение констант скоростей по

результатам разных серий опытов будет давать разные значения.

По разбросу этих значений (при условии, что механизм реакции

верен) можно оценить их ошибки [35].
Ошибка кинетических параметров может быть найдена и

несколько иным путем [112,113]. Пусть у нас имеется N опытных

точек, при обработке которых одним из описанных выше методов

получены некоторые значения параметров. Обозначим вектор этих

параметров через 6^. Теперь отбросим произвольно какую-либо
опытную точку и повторим обработку оставшихся данных.

Полученные при этом параметры обозначим через блм (где индекс
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и = 1, 2, ..., N), так как мы можем отбросить произвольно одну

из iV точек. Отбрасывая последовательно по одной точке и проводя

обработку оставшихся данных, получаем N векторов влг-i-
Величины

6U = №N — (N—1) 65v-i (46)
(и = 1, 2, . . .,iV),

N

Ь = М-1^Ъи (47)
U=l

являются почти несмещенными оценками истинных параметров
назависимо от распределения опытных данных 1112]. Дисперсия
оценки (47) находится по формуле

N

Оба описанных способа дают надежное значение ошибки
кинетических параметров, но требуют значительного объема
вычислений *. Применение их возможно либо для несложных случаев,

когда время обработки одной серии опытов невелико, либо при
наличии сверхбыстродействующих ЭВМ (с быстродействием
порядка 1 млн. операций в секунду).

В общем случае величина ошибки какого-либо параметра
зависит от численных значений других параметров, входящих в

математическую модель кинетики. Такая зависимость является

следствием коррелированности параметров. Действительно, как

мы видели выше, параметры, являясь функциями опытных величин

концентраций, подверженных ошибкам, сами являются

случайными величинами, имеющими некоторое распределение
вероятностей. Коррелированность каких-либо двух параметров оценивается
величиной соответствующего смешанного второго момента этого

распределения (ковариацией). Как доказывается в курсах
математической статистики [33, 114], матрица дисперсий и ковариаций
параметров представляет собой обратную матрицу вторых

производных логарифма функции правдоподобия, взятых с обратным
знаком

1 =

* В работе [88] указывается, что, проводя повторные циклы обработки
данных с разными начальными значениями 9, можно компенсировать большой

расход времени ЭВМ за счет повышения надежности определения
параметров.
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причем производные вычисляются в точке максимума L (6).
Матрица I носит название информационной матрицы Фишера.

В случае гауссовского распределения опытных данных

логарифм функции правдоподобия определяется формулой (7).
Дифференцируя это соотношение по 9^ и 0У-, получаем

/Ч

где 6 — оценки параметров по методу наименьших квадратов.
Элементы информационной матрицы (50) легко найти, если

S (6) в районе минимума аппроксимируется квадратической
функцией параметров 6 [19, 54]. Заметим, что если для определения
кинетических параметров применяется метод Флетчера — Пауэлла
[56], то матрицу I находят автоматически в результате
специального построения итерационного процесса (см. стр. 99). Если в

районе минимума S (6) справедливо разложение (20), то

информационную матрицу определяют из

I = s-2XTX, (51)

где X—(Nxp) —матрица производных вида (21),
вычисленных в точке минимума S (6); s2 — дисперсия опытных данных.
Таким образом, метод Флетчера — Пауэлла и метод нелинейных

оценок в отличие от градиентных методов дают возможность получить

в процессе счета информацию о точности параметров, не прозво-
дя дополнительных затрат машинного времени.

Зная элементы информационной матрицы, можно построить

доверительный эллипсоид, включающий с заданной вероятностью
1 — а истинные значения параметров [74]

1 - а = Вер |(e-fi)T^X(9-6) < Fa (р; /}J , (52)

где Fa (р, /) — 100а%-ная точка распределения Фишера ери
f степенями свободы (р — число параметров, / — число степеней

свободы выборочной дисперсии s2). Координаты концов главных

осей доверительного эллипсоида находятся по формуле [74]

et = е, ± ^j/otiV^MA/)
(г, / = 1, 2,. .

., р),

где 6г — оценка t-ro параметра по методу наименьших квадратов;

пц — i-ж диагональный элемент матрицы (XTX)"i; Я7- —
собственное значение; utj

— i-ж элемент /-го собственного вектора
матрицы
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А — диагональная матрица, i-и диагональный элемент которой
есть ац.

Из приведенных формул следует, что ошибки параметров тем

меньше, чем большее значение имеют производные (21). Величина

производной какой-либо концентрации Cj по некоторому

параметру 6 j в общем случае зависит от величин концентраций остальных

компонентов и параметров. Считая последние известными, можно

воспользоваться математической моделью кинетики для

определения таких условий эксперимента, в которых соответствующие

производные имеют максимальные значения. Иначе говоря, можно

определить условия, в которых с максимальной точностью будет
определяться тот или иной параметр. Такой подход к

планированию эксперимента был предложен Боксом [115]. Рассмотренный
им пример определения условий эксперимента, обеспечивающих

максимум детерминанта информационной матрицы для случая

двух последовательных реакций типа

описан также в работе [49]. В работе [35] приведен план

эксперимента, целью которого было уточнение кинетических параметров

процесса каталитической дегидратации м-гексилового спирта.

Планирование эксперимента, направленное на уточнение

констант сополимеризации различных мономеров,
рассматривается в работах [26, 115а].

В тех условиях, когда ожидают отклонения от нормального
закона распределения, ошибку кинетического параметра можно

оценить такой величиной а (6), чтобы при изменении 6 от 6—а (0)
до 0 + сг (9) вычисляемые на ЭВМ концентрации оставались в

пределах коридора их опытных ошибок.

§ 2. Использование методов математической статистики

для выбора наиболее вероятного механизма

сложных химических реакций

Применение методов математической статистики к задаче

изучения механизма химических реакций началось еще в 30-х годах

(см. [116], стр. 123]). С появлением ЭВМ интерес к этим методам

значительно усилился. В данном разделе приводится обзор тех

аспектов математической статистики, которые нашли применение

для решения задачи выбора Наиболее вероятного механизма

сложных химических реакций. Хотя в литературе по физической химии

слова «наиболее вероятный механизм» употребляются довольно

часто, они, как правило, отражают лишь убежденность авторов
в верности того или иного механизма и фактически не связываются

с понятиями, которыми оперируют теория вероятностей и

математическая статистика.
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В связи с этим нам представлялось целесообразным перед
изложением математико-статистических вопросов рассмотреть и

традиционные методы проверки химического механизма реакции, тем

более, что статистические методы изучения механизма не являются

обособленными, а в той или иной мере связаны с традиционными

физико-химическими методами. Трудности, возникающие при
доказательстве определенного течения реакции, хорошо известны

[116—118]. Часть этих трудностей связана с обнаружением,
идентификацией и количественным измерением промежуточных и

конечных продуктов реакции. Не менее трудной является и

математическая сторона задачи. Необходимость учета нескольких стадий
механизма реакции приводит к системе дифференциальных
уравнений кинетики, которая может быть решена аналитически лишь

в простых случаях, причем часто оказывается, что решение
является весьма громоздким [119—121].

Например, концентрация реагента В, участвующего в

реакции типа

дается таким выражением [121]:.

где

х = ехр {- (кх + Аз) О, К = КК [ А]о (кх +

fJl(2iVK2 y-t
н\(иУкУ

у

(Н, J — функции Бесселя).
Небольшое усложнение схемы приводит к необходимости

интегрировать уравнения кинетики численно. Применение для этих

целей ЭВМ должно сыграть большую роль при изучении механизма

сложных химических реакций, а также реакций, протекающих в

неизотермических условиях [122]. Действительно, найти механизм

реакции в сложных случаях без использования ЭВМ оказывается

практически невозможным [123,124]. Физико-химики все чаще

приходят к выводу о том, что математическое моделирование

кинетики на ЭВМ должно быть обязательным важным дополнением к

экспериментальным методам изучения механизма сложных

реакций .[124а, 125]. Здесь необходимо заметить, что первая попытка

численного интегрирования системы кинетических уравнений
большой размерности была предпринята еще в 1940 г. [126].
Авторы [126] применили для этих целей механический дифферен-
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циальный анализатор системы Буша. Аналогичная
вычислительная машина была использована в 1948 г. для изучения механизма

каталитического окисления этилена в окись этилена [2].

1. Механизм химической реакции

Механизмом химической реакции принято называть

совокупность стадий, из которых складывается реакция (см. [1], стр. 75,
а также [127]). Подобный смысл придавал понятию «механизм

превращений» еще Вант-Гофф [128]. Иногда подчеркивается [122],
что механизм есть совокупность элементарных стадий реакций,
причем под элементарностью стадии понимается протекание ее

в один акт, результатом которого является прямое превращение

исходных компонентов в продукты данной стадии. Часто

оказывается (см., например, [129]), что стадия, считавшаяся ранее

элементарной, в действительности состоит из нескольких стадий.
Недостаточная изученность механизма проявляется также в

противоречивости утверждений об элементарности какой-либо стадии

реакции, высказываемых разными авторами [129]. В связи с

трудностями установления природы элементарного акта

предположения об элементарности той или иной стадии химической реакции
часто носят вероятностный характер.

При рассмотрении математико-статистических методов для

решения задачи о наиболее вероятном механизме стадии реакции

будут предполагаться элементарными в том смысле, что они не

могут быть расчленены хоты бы по той причине, что в данное

время для такого деления нет достаточных оснований.

В некоторых случаях с целью упрощения ряд
последовательных стадий объединяется в одну стадию. При этом находит

употребление термин «механизм стадий» (см. [31, стр. 18]). В связи с

этим Стрейтвизер [130] констатирует, что задача изучения
механизма в зависимости от вносимых упрощений может

рассматриваться на различных уровнях. На наиболее высоком из них

механизм реакции рассматривается как описание не только всех стадий

реакции, но и местонахождения связующих электронов во время

превращения. Этот подход нашел широкое применение при
изучении механизма органических реакций в конденсированной фазе
[118, 130—133]. В принципе элементарный акт химического

превращения может быть представлен как перемещение некоторой
точки (соответствующей каждому возможному расположению атомов)
по поверхности потенциальной энергии ([1, стр. 58]), что

практически возможно лишь для систем с числом атомов не более трех
[134—136]. При физико-химическом подходе к проверке механизма

реакции основную роль играет так называемый кинетический

метод [122,137—140]. Этот метод заключается в измерениях

концентрации исходных, конечных или устойчивых промежуточных веществ,
а также суммарного давления реагирующей смеси в зависимости от
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времени. В связи с внедрением новейших физико-химических
методов анализа стало возможным определять в ходе реакции также и

концентрации лабильных промежуточных веществ (см., например,

[141]). Если природа этих соединений неизвестна, то естественно,

что анализ кинетики не добавит новых сведений такого рода ([31,
стр. 22]).

Действительно, система дифференциальных уравнений
кинетики не изменится от того, будем мы какое-либо промежуточное
лабильное соединение называть, скажем, радикалом, ионом, или

ионом-радикалом*. Уточнение механизма реакции в части

установления характера и природы активных частиц производится обычно

различными физико-химическими методами (см. обзор [142], а также

предисловие к книге [144].). Эта задача в некоторых случаях
может быть решена также и кинетическими методами в сочетании

с расчетными. Например, для решения вопроса о характере

промежуточного соединения в реакции диенового синтеза сопоставлялось

экспериментальное значение предэкспоненциального множителя

в уравнении Аррениуса для константы скорости реакции и

рассчитанное на основе теории абсолютных скоростей реакций [142].
Совпадение с опытом оказалось более близким для случая,
когда промежуточным соединением является циклический
комплекс, а не бирадикал. Иногда для подобных целей необходимо
проводить квантово-химические расчеты [144].

2, Традиционные методы проверки
механизма химической реакции

Механизм реакции обычно проверяется по имеющимся

экспериментальным данным. В первую очередь требуется [1, 146],
чтобы решения кинетических уравнений совпадали с найденными на

опыте кинетическими кривыми. Далее проверяют, согласуется ли

макрокинетика реакции с теоретическим ее законом,

получающимся из механизма реакции ([122, стр. 64]). Согласие является

необходимым, хотя и недостаточным условием, которому должен

удовлетворять механизм [31, 122].

Общеизвестно, что к одному и тому же суммарному

кинетическому уравнению могут привести различные механизмы процесса.

Такая ситуация является довольно распространенной (см.
некоторые примеры в работах последних лет [147—150]). Поэтому
знание опытных законов реакции в общем случае не может дать
основания для однозначного определения истинного механизма.

* При изучении механизма встречаются также случаи, когда анализ

кинетических данных не дает возможности указать место разрыва связей.

Примером может служить реакция этерификации [133, 142]. Как известно, место

разрыва связей удалось в этом случае установить, применяя меченый

спирт. Попутно заметим, что использование изотопов может и не быть

информативным [143].
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Упомянутая выше проверка имеет своей целью отсеивание

маловероятных схем, так как отсутствие указанного согласия служит

верным признаком ошибочности предлагаемого механизма [31,

122]. Таким образом, если механизм предсказывает неправильный
порядок для данной конкретной реакции, он должен быть,
безусловно, отброшен [132]. Большую роль для установления
механизма реакции имеет также опытная проверка кинетического

уравнения для всех побочных продуктов и промежуточных веществ
[122]. В случае так называемых разветвленно-цепных реакций для

проверки механизма существенное значение имеет получение из

него тех закономерностей, которые служат количественной
характеристикой предельных явлений [122, 151, 152]. Указывается также

|153], что критерием правильности теоретической схемы, помимо

порядков реакции, может служить количественное совпадение

экспериментальной и расчетной эффективной энергии активации.
Если подобные критерии отсутствуют, то, по справедливому
замечанию Касселя [116], «... построение механизма становится

игрой, скорее приятной, чем полезной». Очевидно, что истинный

ход реакции был бы однозначно определен, если бы удалось
измерить скорости всех элементарных стадий в зависимости от времени
[118, 131], но в этом случае не было бы необходимости в

использовании ЭВМ. Поскольку кинетические данные обычно не столь

полны, приходится говорить лишь о том, что какой-то из

механизмов является более вероятным, чем другие.
Необходимо отметить, что для оценки справедливости той или

иной схемы реакции находят применение сопоставления по

аналогиям с известными фактами [142], а также различные теоретические
и полутеоретические формулы [116, 129]. Кроме того, важное

значение придается опытной проверке тех следствий, которые
вытекают из данного механизма [139, 154, 155]. К этому вопросу,

связанному с планированием эксперимента при изучении механизма

реакций, мы еще вернемся позднее (см. стр. 125).

3. Особенности проверки
механизма химической реакции с помощью ЭВМ

На ранних стадиях применения ЭВМ для изучения механизма

реакций исследователей обычно удовлетворяло хорошее
описание кинетических данных математической моделью [10, 28, 51,
156]. Так, например, утверждалось [51], что если уравнения
кинетики «хорошо описывают эксперимент, то работа считается

законченной, в случае плохого совпадения с опытом вырабатывается
новая гипотеза». Такой подход имеет два уязвимых места. Во-

первых, далеко не во всех случаях ясно, какое совпадение считать

«хорошим», а какое «плохим». Во-вторых, может оказаться, что

опытным данным удовлетворяет несколько механизмов.

Подобная ситуация в кинетике нередка (см., например, [157—162]).
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В условиях нормального распределения исходных опытных

данных значение суммы квадратов отклонений в точке минимума,

уменьшенное в Лт — р раз (N — число опытных точек, р
— число

отыскиваемых кинетических параметров), является несмещенной
оценкой ошибки воспроизводимости [32]

Имея независимую оценку этой величины, полученную, например,

дублированием отдельных экспериментов, можно проверить

гипотезу о совместности этих двух оценок. Как известно [33], эта

гипотеза проверяется с помощью критерия Фишера

F =«£/**, (55)

где si — дисперсия, обусловленная отклонениями опытных точек

от теоретических кривых; si — дисперсия воспроизводимости.

Распределение /"-критерия табулировано в работе [37].
Поэтому, задаваясь определенной вероятностью, можно найти

существенно si превышает s\, или нет. Отклонения от гауссовско-
го закона распределения могут привести к неверным выводам.
В таких случаях можно ориентироваться на модифицированный
/^-критерий, введенный Боксом [163, 164], или на какие-либо

непараметрические критерии. Эффективным критерием такого рода
является М-критерий, предложенный в работе [165]

) (56)
U=l

где N — число опытов; ги
—

ранг концентрации компонента,
вычисленной для условий и-то опыта, в объединенной выборке
2N значений опытных и вычисленных концентраций,
расположенных в возрастающем порядке.

Если верна гипотеза о равенстве дисперсий s\ и si, то

независимо от распределения исходных опытных данных распределение
величины М приближается к нормальному закону со средним

значением

-т?_ N(2N+\){2N-i)
~~

12

и дисперсией

№ + 2) (27V - 2)
180

Процедура проверки нуль-гипотезы* s\ = s\ следующая.

* Нуль-гипотезой в статистике принято называть гипотезу о

несущественности в вероятностном смысле отклонений между двумя случайными
величинами [33].
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Рассчитывают по формуле (56) величину Л/-критерия, затем

определяют его ожидаемое значение и дисперсию. Составляют

отношение

М —М

в(М)
'

которое в случае справедливости нуль-гипотезы распределено

нормально со средним значением нуль и дисперсией а2 = 1. Так как

последнее распределение табулировано [37], то легко найти

вероятность нуль-гипотезы. Если применять соотношение (56) в случае

нормального распределения, то эффективность его в сравнении с

критерием Фишера составит 0,76. Иначе говоря, для того чтобы

сделать одинаково надежные выводы, в случае применения F-

критерия потребуется в 0,76 раз меньшее число опытов. Однако для

применения критерия не требуется столь жестких ограничений на

тип распределения. Заметим, что внешне схожий с М-критерием
критерий Вилкоксона применяется не для сравнения дисперсий, а

для сравнения средних значений двух выборок [166].
Для того чтобы иметь возможность отсеивания части моделей,

дающих одинаковое описание эксперимента (т. е. близкие значения

£min (в)), Иоффе и Письмен [19, 167] предложили критерий ми

нимума количества параметров, необходимых для заданной
степени аппроксимации моделью опытных данных. Формально это

требование эквивалентно принципу Гаусса [32], согласно которому
оптимальным числом параметров является такое число р, при

котором достигается минимум величины 52. Этот критерий
естественно применять для моделей кинетики, имеющих эмпирический

характер и предназначенных для целей интерполяции. Однако для

оценки механизма реакции он непригоден. В самом деле, всегда
можно объединить ряд элементарных стадий в одну суммарную

стадию, добившись, таким образом, снижения числа

отыскиваемых параметров. Если объединение стадий было разумным, то

при этом описание эксперимента не должно ухудшиться

(соответствующий этому случаю пример можно найти на стр. 138).
Мезаки и Киттрелл [168] ввели другой критерий, который

использует информацию об отклонениях расчетных и опытных

величин. Рассмотрим функцию

z = соп — у(сх+ с2), (57)

где Соп — опытная величина концентрации некоторого
компонента; сг и с2

— значения концентрации, вычисленные соответственно

по моделям 1 и 2, которые необходимо сравнить.

Допустим, что верна модель 1. Тогда

, 8) + е, (58)
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где f± (с, t, 6) — решение кинетических уравнений,
соответствующих механизму 1*; е — ошибка эксперимента. Обозначим через

6 оценки параметров, найденные по методу максимального

правдоподобия. Тогда

*i=/i(c,*,6A). (59)
Если число опытов превышает в несколько раз число

параметров, то

U(c4t,b)~f1(c,t,b)=c1. (60)

Подставляя выражение (60) в (58), а результат >— в (57),
получаем

z = ^(c\—са) + е, (61)

где X = 1/2.
Таким образом, зависимость z от Д = сх

—

с2 в

рассматриваемом случае представляет собой прямую линию, проходящую через
начало координат с тангенсом угла наклона X = 1/2. Можно
полагать, что Х=—1/2, если верна модель 2, а не 1. Вследствие

экспериментальной ошибки, входящей в выражение (61), вычисляемое

значение X может не быть точно равным 1/2. Ошибка этой величины

находится из обычных формул регрессионного анализа (см.,
например, [37]):

(62)
где

8{z) = N-V(z-i)*
(63)

X = (S^
A = cx — с2

Суммирование в формулах (62) и (63) проводится по всем исходам

эксперимента. В [168] имеется пример, поясняющий ход
расчетов. Авторы [168] замечают, что если' ошибка s (к) получится
слишком большой, так что доверительный интервал параметра
X будет включать и 1/2 и —1/2, то в таком случае нельзя будет
предпочесть один механизм другому. В книге [168а] описанный

метод обобщен на случай нескольких альтернативных механизмов.

В химической кинетике широко используется постулат в том,

что константы скоростей отдельных элементарных стадий не

зависят от одновременного протекания других стадий [1]. Если этот

постулат справедлив, то в случае, когда верны предположения о

* В случае, когда кинетика описывается системой уравнений, которую
можно решить лишь численно, Д может быть задана в виде таблиц.
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механизме процесса, константы, найденные по результатам

опытов, проведенных в разных условиях, должны быть близкими. Этот

критерий является общим независимо от типа изучаемой реакции
[2, 5, 16, 20, 31, 59, 80, 82, 116, 128, 137, 169-171].
Приблизительное постоянство констант (т. е. отсутствие систематических

отклонений) хотя и представляет собой необходимое условие
справедливости механизма, тем не менее не является достаточным.

Киперман в своей монографии [31] приводит ряд примеров, когда

близкий разброс констант соответствовал нескольким кинетическим

уравнениям. В связи с этим было предложено [31] считать

наиболее вероятным тот механизм, при котором дисперсия констант

наименьшая. Фейгин [20, 38,172] модифицировал этот критерий,
рассматривая не дисперсию, а доверительный интервал параметров.
Заметим, что построение доверительных интервалов
предполагает выполнение гауссовского закона распределения параметров

[33]. Бокс и Хантер [35] обобщили этот подход, применив

дисперсионный анализ для оценки степени разброса констант в разных

экспериментах. Очевидно, что критерий минимальной ошибки
кинетического параметра является менее общим, чем постоянство

параметра, так как механизмы могут отличаться числом констант и

разным набором стадий.
Если в процессе поиска констант скоростей с помощью ЭВМ

на численные значения констант не накладывать ограничений, то

некоторые из них могут оказаться отрицательными [55, 81, 83,
85, 173, 174]. Казалось бы, что факт получения значений к <0

должен рассматриваться как прямое указание на то, что

соответствующий механизм следует отвергнуть. Именно такой подход к

проверке механизма использовался в ряде работ, рассмотренных в

книге Вейласа [173]. Однако прежде чем делать подобные выводы,

необходимо определить ошибку, с которой вычисляется константа,

получившаяся отрицательной. Может оказаться, что

доверительный интервал константы будет включать и положительные

значения [83, 85, 174]. Иначе говоря, точность эксперимента может быть

недостаточной для того, чтобы с помощью рассматриваемого

критерия можно было отвергнуть некоторые схемы реакции.

Разумеется, если доверительный интервал параметра не включает

положительных значений, то механизм должен быть отвергнут. Этот

критерий оказался весьма ценным при рассмотрении механизма

каталитического окисления метана [83]. Исходя из теории Лэнг-

мюра — Хиншельвуда, авторы работы [83] написали 97 уравнений
кинетики, основанных на различных предположениях о

контролирующей стадии процесса. Обработка экспериментальных данных на-

ЭВМ показала, что для 84 моделей две или более константы

получаются отрицательными, причем ни в одном случае 95%-ный

доверительный интервал не включал положительных значений.

Рассматривая вопрос о проверке механизма со статистических

позиций, Бокс и Юл [175] предложили сопоставлять эксперимен-
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тальную поверхность отклика* с вытекающей из механизма

реакции. Они рассматривали случай двух последовательных реакций
типа

где кх и к2 подчиняются закону Аррениуса.
Приняв некоторые численные значения параметров, авторы

[1751 воспользовались уравнениями кинетики для расчета
зависимости выхода продукта С от исходной концентрации
реагента В, времени реакции (£)и температуры (Г). Экспериментальная
зависимость была ими найдена ранее с помощью факторного
планирования опытов и представлена в виде полинома,

связывающего зависимую переменную [С] с независимыми переменными [В]^,
t и Т. Соответствие расчетной поверхности отклика и

экспериментальной свидетельствовало в пользу принятой схемы

реакции.
Пинчбек [176, 177] применил этот критерий для проверки

гипотезы о порядках реакций, протекающих при каталитическом

окислении нафталина во фталевый ангидрид. В работе [178]
характер поверхности отклика позволил исследователям сделав

определенные выводы о механизме окисления нафталина в наф-
тохинон. В отечественной литературе также имеется пример ис

пользования описанного критерия [179].
Хотя в цитированных работах ограничивались качественными

аналогиями, метод сравнения поверхностей отклика может быть

обоснован и количественно. В самом деле, используя факторное
планирование эксперимента, мы можем получить независимые

оценки коэффициентов разложения функции отклика в ряд Тейлора и

найти их ошибки. Затем на основе постулированного механизма

создается его математическая модель и путем расчетов на ЭВМ

строится поверхность отклика, соответствующая рассматриваемому
механизму. Коэффициенты полиномов сравниваются попарно с

использованием критерия Стьюдента

t -
&э~6р (64)

где 6Э и Ьр — коэффициенты разложений, полученных
экспериментально и расчетом механизма; s (Ьэ ) — среднеквадратическая
ошибка коэффициента. Распределение ^-критерия табулировано
в работе [37].

* Поверхностью отклика называют поверхность, задаваемую уравнением,

связывающим некоторую зависимую переменную с независимыми [49].
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4, Классификация контрольных требований,

предъявляемых к расчету на ЭВМ механизма реакции

Как следует из обсуждения литературных данных, механизм

процесса должен удовлетворять целому ряду разнообразных
требований. В работе [61] предложено подразделять эти требования
на два вида: 1) общие контрольные требования и 2) частные

контрольные требования. Первые должны быть справедливы для
расчета механизма любой химической реакции, вторые отражают

специфику конкретной изучаемой системы. Подробное обсуждение
такого деления и конкретные примеры приведены ниже (см. стр.

130). Здесь следует указать, что некоторые частные контрольные

требования носят более общий характер, другие же

справедливы только для данной реакции. Например, требование
выполнения макрокинетического закона реакции является необходимым
для расчета механизма большинства процессов [122], а требование
отсутствия суммарного кинетического изотопного эффекта
характерно лишь для процессов определенного типа [131]. В связи с этим

при расчете механизмов конкретного класса реакций число

контрольных требований, являющихся общими для данного класса,

может возрасти в сравнении с реакциями другого типа [131].
Для проверки механизма важно, чтобы контрольные

требования, вытекающие из эксперимента, не содержали
систематических ошибок. Между тем в химии нередки случаи, когда главный

вклад в отклонения опытных данных вносят не случайные, а

систематические причины [116, 132]. Особенно сильным может

оказаться влияние небольших примесей в реагирующих веществах,

приводящее в некоторых случаях к изменению механизма.

Напомним здесь хорошо известный из литературы факт присоединения
НВг к бромистому аллилу против правила Марковникова, если

олефин не очищен от следов органических перекисей [132].
Если нет уверенности в том, что опытные данные свободны от

систематических ошибок, последние нужно вводить в обработку
на ЭВМ как дополнительные неизвестные параметры [79, 86, 108].

б. Методы проверки механизма реакции
с помощью ЭВМ

Для оценки справедливости постулированного механизма

реакции можно использовать два разных подхода. Первый из

них, развитый в работе [61] и подробно изложенный на стр. 129

настоящей книги, основан на обобщении традиционного
подхода к проверке механизма. Основные черты этого метода

следующие.

1) Критическое рассмотрение опытных данных, имеющее своей

целью составление наиболее полной системы частных

контрольных требований. Расположение требований в порядке их важности

(ранжировка). Оценка экспериментальной надежности требований.
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2) Формулировка возможных механизмов реакции. Отсев

механизмов, явно не удовлетворяющих общим и частным

контрольным требованиям.
3) Последовательный расчет механизмов на ЭВМ с

использованием нелокальных методов поиска констант скоростей по

критерию максимального правдоподобия.
4) Проверка выполнения общих и частных контрольных

требований и оценка вероятности механизмов. Определение наиболее
вероятного механизма реакции.

5 ) Планирование эксперимента, направленное на

различение механизмов, в случае, если два или более из них оказались

равновероятными (в пределах точности оценок вероятностей).
Второй подход к проверке механизма заключается в

следующем [167]. Поскольку частные контрольные требования можно

выразить математически в виде равенств или неравенств, то

задача построения модели механизма может быть сформулирована
в общем случае как задача нелинейного программирования с

ограничениями*. При этом добиваются минимизации отклонений

вычисляемых концентраций (или скоростей реакций) от опытных

значений с учетом ограничений, отражающих частные контрольные

требования. Если в качестве критерия минимизации выбрать
сумму модулей отклонений, то в некоторых случаях задача может быть

сведена к задаче линейного программирования [167]. Считается

[19,21,167], что наиболее вероятным будет тот механизм, для

которого среднее отклонение минимально.

Такая постановка задачи не является вполне строгой по той

причине, что ограничения, соответствующие частным

контрольным требованиям, носят, как правило, вероятностный характер.
Фактически мы можем указать лишь некоторый диапазон

значений, в котором с той или иной вероятностью находится истинная

величина требования. По этой причине построение модели
механизма может рассматриваться математически как задача

стохастического нелинейного программирования. Методы же решения

подобных задач в настоящее время еще недостаточно
разработаны [46].

Что касается первого подхода к решению задачи о выборе
наиболее вероятного механизма реакции из нескольких возможных

механизмов, то он не только сравнительно легко реализуется на

современных ЭВМ, но может быть обоснован статистически,

исходя из принципа максимального правдоподобия. Для численного

решения задачи используется строго обоснованный метод
динамического программирования [181].

* Близкая к этой формулировка задачи математического обоснования
механизма химических реакций была дана В. Н. Кондратьевым в 1944 г.

[180].
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6. Использование принципа максимума правдоподобия
при отыскании наиболее вероятного механизма

Пусть событие А г (i = 1, 2, ..., т) заключается в том, что

выполнено i-e частное контрольное требование. Противоположное
событие обозначим, как обычно, через At. Вероятность того, что

механизм Mj (/ = 1, 2, ..., п) верен при выполнении Аи будет
равна

j) = P(Mi/Ai)P(Ai), (65)

где Р (М}-/Аг)— условная вероятность того, что механизм верен,
если выполняется требование А г; Р (At) — вероятность того, что

требование Аг выполнено.

Если имеет место Аг (т. е. i-e требование не выполнено), то

вероятность того, что механизм Mj верен, определится формулой

P«(Mi) = P(M)/Ai)P(At). (66)

Заметим, что всегда Р (At) -{- Р (А г) = 1, в то время как в общем
случае Р (Mj/A t) + P (Mj/A,) =f 1.

В такой ситуации, когда наступление или ненаступление
события Ai точно неизвестно и могут быть оба исхода, вероятность

того, что механизм верен, определится суммой

Pi5 = Р1г (Mj) + P2i (M-) (i = 1,2,..., т- 7 = 1,2,.. ., п).
(67)

Составим теперь по аналогии с выражением (5) этой главы

функцию правдоподобия механизма в виде

т

=Т\Рц (7 = 1,2,..., п). (68)
г=1

Наиболее вероятным будет механизм, для которого достигает

максимума объединенная функция правдоподобия

L{Mh 6) = £,(М,-)£(в) (/ = 1, 2,. .
., и), (69)

или, что более удобно,

lnL(Mh Ь) = InL(Mj) +lnL(6). (70)

Таким образом, задача поиска наиболее вероятного механизма

заключается в определении

max maxlnL(Mj, 6). (71)
з в

Как упоминалось выше, сформулированная задача решается

в два этапа; ввачаде для каждого механизма Mj находятся наибо-
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лее вероятные оценки кинетических параметров, а затем

определяется наиболее вероятный механизм. Такой подход к решению

задачи поиска механизма соответствует процедуре метода

динамического программирования [181]. В соответствии с этим методом

формула (71) переписывается в виде так называемого соотношения

Беллмана

max {In L (,¥,-)+ max In L (в)}. (72)
з в

При практическом применении этого метода выбора наиболее
вероятного механизма реакции могут встретиться различные случаи

(см. стр. 134). В некоторых ситуациях может не потребоваться
расчет вероятностей по формулам (65—68), так как по характеру

нарушений контрольных требований непосредственно можно будет
определить, какой из рассматриваемых механизмов является более

вероятным. Такой случай имел место при расчете механизмов

радиационного изотопного обмена дейтерия с гидроксильными
группами поверхности силикагеля (см. [61], а также стр. 138).

Один из возможных способов оценки условных вероятностей,
входящих в формулу (66), рассмотрен ниже (стр. 135). Этот способ
основан на ранжировании частных контрольных требований,
проводимом группой квалифицированных физико-химиков.
Аналогичный подход может быть применен и при оценке условных

вероятностей, входящих в формулу (65). При этом следует иметь в

виду, что условие выполнимости контрольных требований
является обычно необходимым, но недостаточным для того, чтобы
считать данный механизм верным, в то время как при

невыполнении основных требований вероятность того, что механизм верен,
обычно невелика. Другими словами, невыполнение требования
более информативно по отношению к отбрасыванию маловероятных
механизмов, чем выполнение требования по отношению к

принятию гипотезы о верности механизма. Поэтому в первом
приближении можно считать наиболее вероятным механизм, для

которого вероятность быть отвергнутым является наименьшей. При
таком подходе можно положить

Рц~Р(М5/Аг)Р(аг) (г = 1,2,..., ж; / = 1, 2,. .
., л). (73)

Вопрос об оценке вероятностей Р(Аг) связан с установлением

закона распределения ошибок, которым подвержены частные

контрольные требования. В случае гауссовского закона вероятности
Р (At) оцениваются с помощью критерия Стьюдента.

Подчеркнем, что необходимость применения статистических

методов при проверке гипотез о механизме реакции стала уже

общепризнанной [19, 20, 42, 51, 74, 82, 88, 168, 175].
Формализация алгоритма поиска наиболее вероятного механизма химической

реакции позволяет перейти к полной автоматизации этого процес-
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са. Что касается передачи ЭВМ процедуры вывода уравнений,
соответствующих конкретной гипотезе о механизме реакции [51],
го эта задача нами уже выполнена (см. стр. 133).

7. Планирование эксперимента при изучении механизма

химической реакции

Хорошо известно, что выбор условий эксперимента является

весьма важным при изучении механизма реакций. Так, например,
если при изучении гидролиза в водном спирте галоидных алкилов

типа трет-хло^жстого бутила вода и спирт будут в избытке, то по

кинетическим данным нельзя будет сказать, протекает ли реакция
по механизму типа S^ или типа Sw*— [133]. Бокс и Хантер [35]
приводят простой пример, когда выбор слишком малого времени

реакции не позволяет отличить механизм

от

А->В->С.

В последнее время при изучении механизма реакций все

большее распространение получают методы факторного планирования
эксперимента [21, 35, 59, 60, 82, 107, 171, 175-177, 182-188].
Эти методы позволяют при меньшем числе опытов охватить более

широкий диапазон изменения условий, чем традиционные методы

изучения кинетики [107]. Обработка результатов эксперимента
несколько усложняется, но при наличии стандартных программ

для ЭВМ опасения [31], связанные с математическими трудностями,

легко устраняются. План эксперимента зависит от характера

изучаемой реакции, но для некоторых классов реакций можно

составить типовые планы. Так, в работе [83] рассматривается
планирование при изучении кинетики каталитических реакций,
описываемых уравнениями типа Лэнгмюра — Хиншельвуда, а в [186]
дан подход к проверке механизма реакций, кинетика которых
описывается системой обыкновенных дифференциальных уравнений с

правыми частями, представляющими собой полиномы по

концентрациям реагирующих компонент. Ввиду того, что последний класс

реакций является довольно широким [1], рассмотрим методику,

предложенную в работе [186], несколько подробнее. Возьмем в

качестве примера систему, в которой протекают следующие реакции:

2А1->А2 + А3,

А1 + А2-^А3 + А4,

А2 —> А4 -f- А5.

* Реакциями типа SNl и SN2 принято называть согласно терминологии,

введенной Ингольдом [138], реакции соответственно мово-и
бимолекулярного нуклеофильного замещения,
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Напишем выражения для скоростей исчезновения вещества

и накопления вещества А2:

= К [AJ2 - k2 [AJ [А2] - к3 [А,]

(74)

Аналогичные уравнения могут быть получены и для скоростей
накопления остальных веществ. Из уравнения (74) следует, что

уравнения кинетики для рассматриваемого класса реакций в

общем виде соответствуют квадратичному полиному, обычно

применяющемуся для описания почти стационарной области

эксперимента статистическими методами [13, 49]

Ч = Ро + S Mi + 2(Wi + 2 Р«я?,

в котором независимыми переменными х являются концентрации

реагирующих веществ, а функцией отклика г\
—

скорость
образования того или иного компонента. Константы скоростей реакций
первого порядка интерпретируются при таком подходе как

линейные эффекты рг-, константы скоростей смешанного второго

порядка
— как эффекты взаимодействия {5г-7- и константы скоростей

реакций второго порядка — как квадратичные эффекты |5П.
Если схема реакций заранее неизвестна, но известны все те

вещества, которые могут принимать участие в реакции, то план

эксперимента составляется таким образом, чтобы по результатам
опытов можно было найти независимые оценки всех коэффициентов
полиномов вида (75), в которых зависимыми переменными являются

скорости образования всех веществ. Далее проводится анализ

статистической значимости коэффициентов и определяется схема

реакции. Описанная методика была применена для изучения кинетики

и механизма реакций каталитического окислительного

дегидрирования бутенов в дивинил импульсным хроматографическим
методом [59, 60].

Особый интерес представляют методы планирования

эксперимента, направленные на различение механизмов, одинаково

хорошо согласующихся с имеющимися опытными данными. Задача
заключается здесь в том, чтобы на основе разработанных
математических моделей механизмов определить такие условия опытов,

при которых предсказания относительно концентрации того или

иного вещества по разным моделям отличались бы на величину,

превышающую ошибку эксперимента. Последующее проведение
опытов в этих условиях должно дать более надежную информацию,
необходимую для отбрасывания менее вероятного механизма.

Один из возможных подходов к решению этой задачи был

предложен Хантером и Райнером [188]. Рассмотрим, следуя работе [188],
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случай, когда имеющиеся опытные данные не дают возможности

предпочесть один из двух механизмов. Математические модели этих

механизмов запишем в виде

, в),

где ct и с2
— концентрации какого-либо компонента реакции,

получаемые расчетом моделей 1 и 2 ; с — вектор концентраций
всех компонентов, от которых зависит с1 или с2; 6 и Ф — векторы
кинетических параметров (размерность их в общем случае может

быть неодинаковой); t — время реакции.

Будем предполагать, что ошибка е, входящая в опытные

значения концентраций си (и = 1, 2, ..., N) распределена нормально
с нулевым средним и дисперсией а2. В соответствии с формулами
(5—6) (стр. 89) составим две функции правдоподобия:

N

L (6) = (2K0TW2exp f-4r 2

[N-25*-2 («-

<77>

где величины

fu - / (Cu, tw в) И gu = g (Cu, tw Ф)

представляют собой вычисленные по обеим моделям для условий гг-го

опыта концентрации рассматриваемого компонента*.

Пусть 6^ и Ф^ — оценки параметров, полученные методом

максимума правдоподобия (который в условиях принятых
предположений соответствует методу наименьших квадратов).
Составим далее отношение функций правдоподобия

ехр | —«

где

Будем поступать теперь в соответствии с теорией проверки
статистических гипотез по отношению функций правдоподобия

* Здесь и далее у векторов использован верхний индекс.
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[166]. Для этого мы должны максимизировать отношение (78),
если верна первая гипотеза. В этом случае, как указывалось выше

(стр. 116), величина

N

2 (Си-1и)2

N-p

является несмещенной оценкой дисперсии сг2. Подставим в

выражение (78) взамен а2 это соотношение и прологарифмируем
получившееся выражение

N

Нам необходимо теперь выбрать условия (N + 1)-го опыта таким

образом, чтобы достигала максимума сумма

iV+l

s= 2 («и-£«)•• (80)

При решении этой задачи встречается очевидное затруднение,
связанное с тем, что до проведения (N + 1)-го эксперимента нам

неизвестно опытное значение концентрации слг-ri- Однако,
поскольку мы предположили, что механизм 1 верен, с точностью до

опытной ошибки мы можем считать, что

CiV+l — / \G -t *N+ii v )• КУ*-)

В формулу (81) входит не 6^, a bN+1, так как при добавлении
новой точки и = N + 1 численные значения параметров модели 1

изменяются. Равным образом изменятся и параметры модели

2. В связи с этим процедура максимизации выражения (80) будет
складываться из следующих действий.

Поскольку первая модель верна, то 6^ будет мало отличаться

от 6ЛГ+1. Поэтому

По N старым точкам и новому значению концентрации (82)
находим уточненные величины параметров обеих моделей. После

этого можно приступать к максимизации (80). Очевидно, что в

общем случае максимум (80) можно найти лишь численно. Для
этих целей можно применить один из методов поиска экстремума,

описанных выше.

Предложенный Хантером и Райнером [188] метод требует
проведения большого объема вычислительной работы. Стремясь
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сократить расчеты, авторы работы [188] рассмотрели упрощение,
связанное с тем, что переопределение параметров QN и Фу после

добавления (N + 1)-й точки не производится. В этом случае сумма

(80) разбивается на два слагаемых

N

S =%(*»- ёи)2 + 0N+l - 8 N+1)\ (83)

из которых первое представляет собой постоянную величину.
Таким образом, задача сводится к определению условий (N +
+ 1)-го опыта, для которого достигается максимум квадрата
разности предсказываемых обеими моделями величин концентраций.

Заметим, что в простых случаях удается найти условия (N +
+ 1)-го эксперимента, строя графики концентраций, вычисленных

по разным моделям, в зависимости от времени или начальной

концентрации какого-либо компонента. Такой подход был применен
в работе [85] при изучении механизма каталитического

восстановления окиси азота. В настоящей книге этот метод иллюстрируется

искусственным примером при рассмотрении модельной
кинетической задачи (см. стр. 149).

Недавно Бокс и Хилл [189] обобщили описанный метод,
применив теоретико-информационный подход к проверке
статистических гипотез, развитый в работе [190].

§ 3. Основные принципы выбора наиболее вероятного
механизма сложных химических реакций с помощью ЭВМ

Целью настоящего параграфа является изложение развитых

нами принципов метода выбора наиболее вероятного из

нескольких возможных механизмов и метода расчета этих механизмов на

ЭВМ, позволяющего одновременно определить ранее неизвестные

константы или отношения констант скоростей отдельных стадий

различных механизмов.

Практическое применение предлагаемого метода

иллюстрируется нами на примере радиационного изотопного обмена

дейтерия с гидроксильными группами силикагеля. Выбор конкретного
объекта исследования обусловлен личными научными интересами
авторов. Принципиальное значение работы от выбора конкретного
объекта не зависит.

Для детального рассмотрения особенностей метода ниже (стр.
149) проанализирована специально построенная задача,
моделирующая в достаточно общем виде метод в целом и отдельные его этапы.

До последнего времени решений такого рода задач с учетом
большого числа элементарных стадий (особенно для гетерогенных

процессов) в литературе описано не было. Для гомогенных систем дело

обычно ограничивалось лишь выбором той или иной стадии (пути
образования отдельного продукта), или поиском той или иной кон-
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станты скорости (предэкспоненциального множителя и энергии

активации), когда остальные считаются известными [20].
Типичной при изучении сложной гомогенной или

гетерогенной реакции является такая ситуация, когда известны

кинетические данные, относящиеся к суммарному процессу, тогда как

сведения об элементарных стадиях его весьма ограниченны.

Предполагается, что в общем случае известны концентрации различных
стабильных продуктов как функции времени, а концентрации

радикалов, ионов, возбужденных молекул и других активных частиц

неизвестны *.

Предлагаемый метод, пригодный для решения стационарных и

нестационарных задач, можно разделить на две основные части.

Физик о-х имическая часть

На первом этапе проводится группой квалифицированных
химиков и физико-химиков составление нескольких возможных

механизмов рассматриваемой сложной реакции. При этом под

механизмом условимся понимать, как указано выше (стр. 113),
совокупность элементарных стадий той или иной сложной реакции.
В связи с этим определением, очевидно, что изменение числа

элементарных стадий хотя бы на единицу или замена хотя бы одной

элементарной стадии другой равносильно предложению нового

механизма реакции.

Предполагается, что число возможных механизмов,

прошедших предварительное обсуждение, ограничено и отражает
различные концепции. Таких схем для одной реакции редко бывает

больше, чем четыре — пять. Все стадии целесообразно разбить по

группам, объединяющим однотипные реакции. Объединение
однотипных реакций в группы имеет далеко не формальный смысл.

При таком объединении число независимо оцениваемых констант

уменьшается фактически до числа групп. В дальнейшем
производится лишь их уточнение.

Так, например, объединив в одну группу реакции типа Н +

+ RH-^H2 + R, мы (в пределах гомологического ряда) можем

определять лишь одну константу, а остальные оценивать по

правилу Поляни и Эванса с тем, чтобы потом уточнить их. В

приводимом ниже примере объединение однотипных реакций в группы
также оказалось полезным.

Второй этап — составление общих и частных контрольных

требований, применяемых к расчету различных моделей. В общие

требования всегда входят следующие: а) выполнение всех видов

балансовых уравнений как для процесса в целом, так и для каж-

* В некоторых задачах информация о суммарном процессе имеет несколько

иной вид. Это, например, относится к процессам горения (скорость
распространения пламени) и взрыва (скорость ударной волны и т. п.). В

настоящей работа задачи этого типа не рассматриваются.
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дои отдельной стадии; б) требование удовлетворительного

описания какого-либо вида кинетического эксперимента *. Заметим,
что проверять выполнение контрольного требования а) необходимо
уже на стадии предварительного (до расчета на ЭВМ) рассмотрения

альтернативных механизмов. Поскольку при нарушении хотя бы

одного из общих контрольных требований механизм считается

неверным, то, очевидно, что некоторые механизмы могут быть

отвергнуты еще до расчета на ЭВМ. Если баланс по стадиям соблюдается,
то механизм может быть допущен для расчета и общие уравнения
баланса автоматически будут выполняться при разумных

значениях шага интегрирования. Таким образом, выбор максимального

значения шага интегрирования контролируется по выполнению

общих уравнений баланса. К требованию б) относятся все

«тривиальные» положения. Например, очевидно, что энергия

активации любой из стадий не может превышать энергию разрыва

соответствующей связи, все константы скоростей и концентрации не

могут принимать отрицательные значения, константы скоростей
элементарных стадий зависят только от температуры (в
неравновесных системах от параметров распределения). Последнее
означает, в частности, что константы скоростей стадий не зависят от

значений концентраций, их отношений. В некоторых случаях
появление неравновесности (например возбужденных молекул)
может быть вызвано не только внешними (например облучением)
причинами, но и самой реакцией. Если роль возбужденных частиц
в реакции велика, то такая система является физически
неравновесной и константы скоростей стадий, в которых эти

возбужденные частицы участвуют, будут зависеть от характера возбуждения.
Можно, конечно, формально вводить новый сорт частиц, например,

кроме А еще и А*, сохраняя температуру как единственный
параметр, определяющий значение констант. Такой прием, однако, не

описывает сущность явления, так как содержит (помимо всего

прочего) необоснованное допущение о наличии только одного

возбужденного реакционноспособного состояния. В общем случае

нужно знать распределение А по возбужденным состояниям, т. е.

найти параметры неравновесного распределения. Очевидно также,

что если определяемые по расчетным данным отношения констант

могут быть сопоставлены с известной из термодинамических

данных константой равновесия, то такое сопоставление является

необходимым и совпадение (с учетом соответствующих ошибок)
этих величин следует включить в число общих контрольных
требований.

Частные требования формулируются для конкретной задачи
на основании прямого эксперимента или с учетом других опытных

данных. Предполагается, что используемые опытные данные не

могут быть опровергнуты. Примерами таких требований могут

* Удовлетворительного описания в пределах заданной точности, которая,
конечно, не должна превышать точность эксперимента.
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быть следующие: условие постоянства давления, характер

зависимости начальной скорости реакции от начального давления и др.

При отборе экспериментальных данных для составления

контрольных требований необходимо строго оценивать их

совместность, ибо в противном случае будет составлена не имеющая

смысла несовместная система контрольных требований. Подчеркнем
что контрольные требования необходимы не для выполнения

расчета, а для анализа его результатов.

Несколько особняком среди всех контрольных требований
стоит общее контрольное требование б), поскольку сравнение

результатов расчета и данных какого-либо вида кинетического

эксперимента производится самой ЭВМ непосредственно в

процессе расчета. Мы же только проверяем, насколько удалось

приблизить расчетные величины к опытным.

Целесообразно произвести ранжировку частных контрольных

требований. Для этого можно поручить квалифицированным
специалистам расположить их в порядке важности с учетом
надежности того или иного экспериментального результата или на основе

какого-либо другого критерия.

Вопрос о ранжировке представляется нам наиболее сложным.

Внутренние связи между отдельными частными контрольными
требованиями нам далеко не всегда ясны, поэтому мы лишены

возможности доказать независимость каждого из них друг от друга и

от совокупности других требований. Очевидно, что требование,
являющееся следствием другого (или других), не дает

дополнительной информации и должно быть исключено из списка. Однако, в

частности, по указанной выше причине ранжировка требований по

их информативности обычно не представляется возможной.

Следует ли в таких условиях вообще отказаться от ранжировки

требований? Нам это представляется неправильным. Действительно,
одни частные контрольные требования формулируются на

основании результатов прямых экспериментов, в то время как другие
основаны на аналогиях (на использовании экспериментальных

результатов, полученных при изучении близких, но все же других

процессов). Одни частные контрольные требования относятся к

суммарному процессу и основаны на экспериментах, именно к нему

относящихся, а другие отнесены к элементарным стадиям, хотя

также основаны на экспериментальных данных,

характеризующих суммарный процесс. В этих условиях мы считаем

коллегиальную ранжировку частных контрольных требований
необходимой, хотя и понимаем, что ранжировка является отчасти

субъективной. Заметим, что такой метод сейчас широко
применяется в различных статистических исследованиях [49].

Обязательные контрольные требования должны выполняться

полностью и имеют приоритет перед частными. Наиболее

вероятным будет тот механизм, который наиболее полно удовлетворяет

общим и частным контрольным требованиям. Таким образом, по-
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нятие «наиболее вероятный механизм) не связано прямо с

числом составляющих его стадий. При решении модельной задачи
(см. стр. 149) показано, что увеличение числа стадий сверх
необходимого минимума не улучшает выполнения контрольных

требований, хотя при этом и увеличивается число определяемых

параметров. Более того, некоторые контрольные требования вовсе

перестают выполняться. Ниже будет показано, каким образом
словам «наиболее вероятный» может быть придана численная мера.

Отметим следующие обстоятельства. Во-первых, поскольку

при составлении возможных механизмов и контрольных

требований группа физико-химиков имеет дело с экспериментальными

данными, полученными на «сегодняшний день», то именно по

отношению к уровню знаний этого «сегодня» и справедливы слова

«наиболее вероятный механизм из нескольких возможных». Во-вторых,
исторический опыт показывает, что на современном этапе

развития химической кинетики происходит не столько отрицание

предшествующих схем, сколько их дополнение и уточнение в том,

например, смысле, что стадии, ранее считавшиеся элементарными,
не оказываются таковыми. При этом основная пусть даже очень

примитивно выраженная концепция предшествующих авторов
не отвергается, а развивается и дополняется.

Очень хорошо эти обстоятельства иллюстрируются в

монографии Штерна [191], подробно осветившего историю развития

современных представлений о механизме окисления углеводородов.

Расчетная часть

Для каждого из предложенных механизмов составляется

система обыкновенных дифференциальных уравнений,
описывающих скорости изменения концентраций всех реагирующих веществ*.
Затем производятся приближенные (конечно очень грубые)
оценки констант, необходимые только для начала численного

интегрирования. Далее по разработанной нами стандартной программе,
реализующей метод оврагов, отыскиваются такие значения констант

скоростей, которые обеспечивают достижение минимума суммы

квадратов отклонений расчетных величин концентраций от

опытных.

Далее результаты расчета сопоставляются с контрольными

требованиями, в соответствии с которыми и производится выбор
наиболее вероятного механизма.

При сопоставлении результатов расчета того или иного

механизма реакции с общими и частными контрольными требованиями
могут встретиться различные случаи.

* Эту процедуру нам удалось автоматизировать при помощи специальной
программирующей программы, так что уравнения кинетики фактически
составляются самой ЭВМ.
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а. Не выполняется хотя бы одно из общих требований.
Нарушение уравнений баланса может быть связано с нестрогой записью

одной из стадий реакции (например, Н + стенка-> обрыв), а

также с выбором слишком крупного шага численного

интегрирования при решении системы кинетических уравнений на ЭВМ.
Появление отрицательных значений концентраций может быть

связано с аналогичной причиной. При составлении программы

необходимо предусмотреть проверку знака концентраций, ибо обычные
(библиотечные) программы численного интегрирования на ЭВМ
такой проверки не предусматривают. Что касается появления в

процессе расчета отрицательных значений констант, то в этом

случае предложенный механизм сразу должен быть отвергнут (см.
стр. 119).

Если в результате расчета оказывается нарушенным
требование о том, что энергия активации меньше или равна энергии связи,
то либо неверна рассматриваемая схема реакций, либо

экспериментатором допущена ошибка при определении (или расчете)
температуры.

Требование о совпадении расчетных и опытных кинетических

данных всегда должно выполняться с точностью не меньшей, чем

точность самого эксперимента, которую следует строго оценивать.
В противном случае механизм процесса не может быть принят. Если
же все необходимые уточнения не приводят к совпадению

расчетных величин хотя бы с одним общим контрольным требованием,
механизм не может рассматриваться как наиболее вероятный.

б. Все контрольные требования (общие и частные)
выполняются при расчете двух (или более) механизмов. В первом
приближении можно предпочесть тот механизм, при котором описание

экспериментальных данных будет более точным. Более строгое
обоснование выбора механизма в этом случае было дано в работе
[168] и подробно изложено на стр. 117 настоящей книги.

в. Выполняются все общие контрольные требования, а

частные контрольные требования выполняются только в одном

механизме. Согласно определению, это и есть наиболее вероятный
механизм реакции.

г. Выполняются все общие контрольные требования. Частные
контрольные требования (одно или несколько) не выполняются при

расчете всех анализируемых механизмов реакции. Именно в этом

и только в этом случае используется ранжировка требований.
Последняя позволяет расположить их в порядке, необходимом для

перехода к вероятностным понятиям, оперируя которыми можно

дискриминировать тот или иной механизм. Поясним это на

следующем примере.

Пусть имеется п частных контрольных требований. Тогда
сумма Sr всех рангов
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Примем, что при нарушении i-го требования, имеющего ранг rit

условная вероятность Рг того, что рассматриваемый механизм

может быть верным, составляет

Л = 1-£, (84)

где rJSf— вероятность обратного события, т. е. вероятность того,
что данный механизм неверен при условии, что нарушено i-e
требование*.

При несоблюдении нескольких контрольных требований
условная вероятность того, что механизм Мj верен, определяется
произведением вида

>-*i) (7 = 1, 2f 3 л), (85)
i=l г=1

где rrij
— общее число невыполненных требований при расчете

механизма Mj.
Отметим, что при увеличении числа невыполненных

контрольных требований условная вероятность соответствующего

механизма P(Mj)-+Ot поскольку сростом т S™ растет много быстрее, чем

2=1

Таким образом, в предлагаемом нами подходе к оценке

вероятности механизма с помощью ранжирования контрольных требований
с ростом числа этих требований снижается вероятность принятия
неверного механизма. Необходимо иметь в виду также и то, что,

как правило, каждое контрольное требование (основано оно на

прямом эксперименте или сформулировано на основании

косвенных данных) выражено в цифрах, имеющих определенную точность.

Чем более неточной является контрольная цифра, тем легче

удовлетворить данному контрольному требованию, но тем менее

надежным будет выбор механизма. Это следует учесть при оценке
вероятности того или иного механизма.

Далее, отклонение какой-либо расчетной величины от

контрольной может быть различным. Но в одном случае отклонение

расчетных и опытных значений контрольных цифр меньше, чем

в другом. Естественно, что нужно предпочесть механизм с меньшим

отклонением от контрольного требования. И это обстоятельство
также должно найти свое отражение в методике поиска наиболее

вероятного механизма.

* Очевидно, что Р — 1 при i = О (все контрольные требования выполнены)
Вероятность Р^=о является не условной, а полной (Pi=0~ P).
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Таким образом, при проверке выполнения контрольных
требований следует учитывать тот факт, что соответствующие этим

требованиям величины не являются абсолютно точными. Если

контрольные требования представляют собой экспериментальные

результаты, то они несут в себе опытную ошибку, имеющую

некоторое (обычно нормальное) распределение вероятностей. Если же

требования являются результатами расчета, проведенного в

соответствии с каким-либо теоретическим методом, то они также

содержат некоторую ошибку, связанную с неточностью расчета.

Другими словами, если анализ того или иного механизма

приводит к некоторой величине критерия, выступающего в качестве

контрольного требования, то мы не должны ожидать абсолютного

совпадения расчетной и контрольной цифры. Более того, мы имеем

право говорить лишь о вероятности того, что данное требование
удовлетворяется или неудовлетворяется. Поскольку основная

задача, связанная с поиском наиболее вероятного механизма,
заключается в том, чтобы отклонить менее вероятные механизмы, нас

будет интересовать главным образом вероятность того, что

некоторое контрольное требование не выполняется при расчете
математической модели данного механизма. Эту вероятность легко найти,
зная распределение ошибок в контрольных требованиях и

соответствующую расчетную величину. В случае нормального
распределения эта задача решается, как обычно, с помощью критерия Стыо-

дента [37].
Полная вероятность того, что механизм Мj верен, определе-

лится произведением двух вероятностей — вероятности
невыполнения требований и условной вероятности того, что механизм

Mj верен, если контрольные требования не выполнены

т.

Р(М,) = Р(М,-) Il^ii (7 = 1,2,...>Л), (86)
г=Х

где Ptj — вероятность того, что i-e контрольное требование не

выполняется при расчете механизма Mj.
Напомним, что в формуле (86) i =j= 0 (см. сноску к стр. 135).

Выше мы отмечали, что с ростом числа требований Р (Mj) —>■ 0.
В общем случае число контрольных требований характеризует

полноту кинетического исследования химической реакции. Из этого

следует, что величина Р (Mj) -»■ 0 в формуле (86) также отражает

степень изученности данной системы. С другой стороны, вероятности

Ptj характеризуют жесткость контрольных требований. Чем
надежнее требование, тем меньше его неопределенность и тем меньше

вероятность того, что оно будет согласовываться с величиной

критерия, полученной расчетом механизма на ЭВМ. Поэтому чем

больше число и чем более жесткими являются частные контрольные

требования, тем более определенными будут наши знания о механизме

изучаемой реакции. Другими словами, в результате применения
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предлагаемого нами метода для исследования механизма сложного

процесса извлекается определенное количество информации,
содержащейся в экспериментальных данных. Заметим, кстати, что в

сложных случаях получение дополнительной информации без
применения ЭВМ вообще невозможно.

Для оценки количества информации, получаемой при
использовании описываемого метода, естественно воспользоваться теорией
информации. При этом количество информации / определится
разностью энтропии системы до (Но) и после (Н) извлечения

информации

/ = Я0-Я, (87)
где

п

н = -2р; log Р3-, (88)

a Pj — вероятность /-го механизма (/ = 1, 2, ..., и).
Все п механизмов образуют полную систему, так что

суммарная вероятность должна быть равна единице

п

SP —

3-1

Исходя из этого, мы должны пронормировать вероятности,
определяемые формулой (86)

-1

\ . (89)

Что касается расчета априорной вероятности того или иного

механизма, то он может быть выполнен также при помощи

коллегиальной ранжировки. Однако, если какой-либо из механизмов будет
признан единогласно менее вероятным, то рассчитывать его на

ЭВМ, по-видимому, не имеет смысла. Число возможных механизмов

уменьшится при этом на единицу, и мы придем к системе, в которой
оставшиеся механизмы будут априори равновероятными. Поэтому
можно считать, что

рг* = Р2° = . ..
= /V - гГ\ (90)

Количество информации, извлекаемое из эксперимента
*

* Если логарифм в формуле (91) берется по основанию 2, количество

информации измеряется в битах.
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Легко видеть, что максимальное количество информации
получается в том случае, когда второе слагаемое в выражении (91)
равно нулю. Действительно, поскольку Pj <Г 1, то

3=1

и только тогда, когда одна из вероятностей Pj = 1, мы имеем /тах =
= log п.

Заканчивая описание методики расчетов, подчеркнем, что

только сочетание нелокальных методов поиска констант с возможно

более полным набором требований обеспечивает выбор наиболее
вероятного механизма реакции. Другими словами, чем более полно

изучена та или иная реакция химиками и физико-химиками, тем

более надежны результаты решения задачи на ЭВМ.

§ 4. Определение констант скоростей
элементарных стадий и выбор наиболее вероятного
механизма радиационного изотопного обмена дейтерия
с гидроксильными группами силикагеля

Реакция радиационного изотопного обмена дейтерия с

гидроксильными группами поверхности силикагеля в поле излучения

ядерного реактора была исследована ранее и все

экспериментальные данные, использованные нами в этой работе, взяты из статьи

Долидзе [192]. Напомним ее основные результаты.
Реакция проводится в статической системе при практически

постоянном с точностью + 2% (в каждом отдельном опыте и всей

серии экспериментов) давлении газа (состав исходного газа D2 —
95,2%; HD — 4,3%; Н2 — 0,52%), составляющем 104 мм рт. ст.

Элементарная оценка энергетики процесса позволяет

заключить, что можно не учитывать диссоциацию водорода газовой фазы
на атомы под действием излучения.

Показано, что кинетика суммарного (по убыли содержания
D в газе) процесса описывается уравнением

w = ~
я
= к1Уп№-щ + п)-к2(по-п)Уъ=К, (92)

где кг — константа, включающая произведение мощности дозы
на константу скорости обмена дейтерия газовой фазы с ОН-груп-
пами поверхности силикагеля; S — поверхность образца
силикагеля {см2)] р — число обменоспособных гидроксильных групп (см"2);
к2 — константа, представляющая собой произведение мощности

дозы на константу скорости обратной реакции — обмена водорода
с OD-группами силикагеля; п0 и п — начальное и текущее

количество атомов дейтерия в газовой фазе.
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Очевидно, что при t —■> 0 второй член в уравнении (92)
обращается в нуль, w0

— |^[D2]0, a w0— S (J, что и найдено
экспериментально (рис. 33, а, б).

Решение этого уравнения на СЭИ-1 *
позволило определить,

что (3 = (1,2 + 0,1). 1014 см~2. В нашей работе мы пользовались

значением (5 = 1,2.1014 см'2 и 5УД = 600 м^г"1. Величина [D2]0
составляла 5« 1019 молекул, а навеска силикагеля 0,5 г.

Зависимость изотопного состава газовой фазы от времени

приведена на рис. 34.

Отношение к2/кг для суммарного процесса обмена

(кинетический изотопный эффект — КИЭФ) составляет 1,88 + ,0,06, а для

радиационной хемосорбции водорода [193] 2 +; 0,2.
Как указано выше (см. стр. 130), в соответствии с общими

контрольными требованиями для любых химических реакций всегда

wo-W~f5cef<~f

Навеска

Рис. 33. Зависимость начальной скорости изотопного
обмена от начального количества (давления)
дейтерия (а) и от навески силикагеля (б)

должны иметь силу уравнения материального баланса и

удовлетворительно описываться экспериментальные данные. В нашем случае
эти общие контрольные требования следующие **:

(уравнение баланса
ДЛЯ

1. [SOH] + [SOD] + [SO] = [SOH]0

2 [Н,] + [HD] + [SOH] + [H]s= const

ОгП. . гтттм . ГРАП1 1 гтм t. (уравнение баланса
2 [D2] + [HD] -f [SOD] + [D]s = const ^/я атомов D)

2. Концентрации всех стабильных и промежуточных продуктов
не могут принимать отрицательные значения.

3. Константы скоростей отдельных стадий не могут принимать

отрицательные значения.

* СЭИ-1 — статический электроинтегратор.
** Здесь и дальше S—атом поверхности, а индекс 5 указывает, что данный

атом находится на поверхности.
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4. Полученные расчетные кривые должны удовлетворительно

аппроксимировать экспериментальные данные по зависимости

изотопного состава газовой фазы от времени (см. рис. 34).
Сформулируем теперь частные контрольные требования для

рассматриваемой задачи, сохранив для удобства изложения

сквозную нумерацию требований.
5. В соответствии с экспериментальными данными должно

иметь место условие постоянства давления.

6. Общее число радикалов каждого сорта должно быть

много меньше общего числа частиц соответствующего стабильного

Рис. 34. Зависимость
изотопного состава газовой фазы от

времени

Точки —экспериментальные данные

[192]. Сплошные линии —

результаты расчета на ЭВМ по схеме IV

продукта. С учетом данных по радиационной хемосорбции
водорода принято, что

тт тл ел

По иа su
|q_2

Н2 D2 SOH

7. Концентрации (H)s и (D)s пропорциональны концентрациям

оответствующих стабильных продуктов в газовой фазе так, что

[H]S~2[H2] + [HD]

[DJS~2[D2]+ [HD].

8. При больших временах реакции (около 20 час) изотопный

состав газовой фазы не должен значительно изменяться. При этих

временах [H]s и [D]s должны иметь стационарные значения;

в силу этого должно быть стационарным и значение [SO].^
9. Рассчитанные значения отношений констант скоростей

однотипных реакций для протия и дейтерия не должны отличаться

более чем в 2 раза (в соответствии с КИЭФ).
10. Из результатов расчета должно следовать, что при

заданных экспериментальных режимах w0 — У [D2]o и w0
~ [SOH|O.
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Гроизведем теперь ранжировку частных контрольных
требований 5 — 10.

На первое место поставим требование 5 (ранг 6), поскольку оно

основано на экспериментальном результате, полученном в большом
числе опытов при непосредственных измерениях, не требующих
дополнительной обработки или интерпретации.

На следующее место поставим требование 10 (ранг 5),
сформулированное на основании прямых экспериментов, включавших в

себя анализ изотопного состава газовой фазы. Однако для

определения начальных скоростей необходимо было построить
соответствующие кривые и определить тангенсы углов наклона

касательных к начальным участкам этих кривых.

Следующим можно считать требование 8 (ранг 4), которое в

отношении стабильных продуктов основано на прямых

измерениях. Из этого логически следует, что это же требование можно

сформулировать и для промежуточных продуктов (H)s, (D)s и SO.

Далее поставим требование 9 (ранг 3). Оно основано на

результатах расчета эмпирического уравнения (92), хорошо
описывающего суммарный процесс, и на основании результатов аналогичных

экспериментов по радиационной хемосорбции протия и дейтерия
[193].

Ранг 2 в нашей последовательности приписан требованию 6,
которое в первой его части является бесспорным, так как

нарушение его привело бы к заметному уменьшению концентрации гидро-
ксильных групп и эквивалентному увеличению концентрации

поверхностных радикалов (SO). Однако по данным ЭПР

концентрация (SO) << (SOH) даже в отсутствие водорода (для поверхностей
типа силикагеля и y-A12O3; см., например, работу [194]). Вторая
часть требования 6 основана на результатах приближенной
оценки, что и снижает ранг этого требования .

Поскольку требование 7 — единственное, не имеющее

экспериментального обоснования, то оно, естественно, имеет низший

(первый) ранг.

Результаты ранжировки частных контрольных требований
представлены ниже:

Ранг 6 5 4 3 2 1

Требование ... 5 10 8 9 6 7

Как видно из изложенного выше, ранг требования определялся
нами с учетом его экспериментальной обоснованности *.

Возможные схемы процесса составлялись нами при учете

следующих групп реакций (внутри каждой группы объединены одина-

* Не исключена возможность разделения ранга между двумя или
несколькими требованиями. В этих случаях им приписывается средний ранг,
который будет дробным.
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ковые типы

составом).
взаимодействия частиц, отличающихся изотопным

Группа А

D2m2(D)s

Группа В

Группа С

|SOD/w»SO+ (D)s
lSOHw>SO + (II)s

HD-^SOH + (D),

Группа D

Группа Е

Группа F

Группа G

SOH + (H).
SOH + (D).
SOD + (H),

SOD + (D).

SOH + (D)S

> SO + H2

SO+ HD

SO + HD

SO + D2

(H)e
(H),

H2
(D).

Is

(H)s

SO + (D)s

•SOH

■ SOD

(I)

(И)

(III)

(IV)

(V)

(VI)

(VII)

(VIII)

(IX)

(X)

(XI)

(XII)

(XIII)

(XIV)

(XV)

(XVI)
(XVII)
(XVIII)

(XIX)

(XX)

Реакции группы А являются реакциями радиационной

диссоциативной хемосорбции водорода, при которых на поверхности

образуются подвижные атомы (Н)8 и (D)s. Реакции группы В —

реакции радиационной деструкции поверхностных гидроксильных
групп. В группе С объединены реакции поверхностных радикалов

SO с молекулами из газовой фазы. В группе D поверхностные
атомы взаимодействуют с гидроксильными группами по реакции

отрыва водорода, а в группе Е — по реакции изотопного замещения

водорода. Группы F и G объединяют все возможные реакции
рекомбинации радикалов.

В механизм № 1 были включены реакции групп Б, С, F и G;
в механизм № 2 — реакции групп А, В, F и G; в механизм № 3 —
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реакции групп A, D и G\ в механизм № 4 — реакции групп Л,

D, E, F и G.

Принимая во внимание изложенное выше, мы приняли

следующую методику расчетов на ЭВМ. Для каждого из четырех
механизмов составляли систему обыкновенных

дифференциальных уравнений, описывающих скорости изменения концентраций
всех реагирующих компонентов. Затем находили приближенные
оценки констант скоростей тех стадий, которые образуют
исследуемый механизм процесса. При этом учитывали требования
4, 6 и 9.

Поясним процедуру оценки численных значений констант

на примере расчета механизма № 4. При t—>0 можно

приближенно считать, что скорость изменения концентрации дейтерия
определяется в основном стадией (I)

~-h [De]. (93)

Тогда оценка kj может быть сделана следующим образом:

к^\1*1ш- (94)

Скорость накопления HD при малых временах реакции

обусловлена стадией (XI)

[D]s. (95)

Для опенки &xi , согласно требованию 6, положим, что [(D)s] ~
~0,01 [D2]0. Скорость накопления HD можно найти графическим
дифференцированием опытной кривой [HD] = f (t).

Вычислим теперь приближенное значение константы &хх-
Для этого запишем уравнение для скорости изменения

концентрации радикалов SO. Накопление радикала SO в начальный

период процесса определяется стадией (XI), а его расход
— реакцией

(XX). Тогда

= kxl [SOHJo [(D).] - кхх [SO] [(D)s]. (96)±19

Считая, что при малых At величиной A [SO] можно пренебречь,
и учитывая требование 6, находим кхх. Зная оценку /сХх» можно

легко найти &xiv, если в соответствии с экспериментальными

данными работы [192] принять, что при t < 2 час расходом SOD по

реакциям (XII), (XIII) и (XV) можно пренебречь. Тогда

^Р- kxlY [SOH]0 [(D).] + fcxx [SO] [(D),l. (97)

Согласно требованиям 6 и 7, примем, что [SO] и [(D)s]
приближенно известны и составляют 0,01 от соответствующих компонентов.
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По уравнению баланса можно вычислить [SOD] как функцию
времени, используя опытные данные для [D2] и [HD]. С помощью

графического дифференцирования полученной зависимости находится

значение d [SOD]/dJ. Поскольку /сХх известна, находим и /cxiv-
Полагая, что при t <2 час скорость изменения концентрации

(D)8 обусловлена реакциями (I), (XI), (XIV), (XVIII) и (XX) и что

А/ ^ 0,1 часа

можно вычислить приближенное значение A;Xviib так как оценки

&i, kXi &Xiv и кхх уже сделаны *.

Таким образом, мы определили по одной константе скорости

для каждой из пяти групп реакций, входящих в механизм № 4.

Зная одну константу в группе, всегда можно задать и

приближенные величины всех остальных констант, поскольку внутри групп

объединены одинаковые типы реакций. После подстановки
найденных приближенных значений констант в уравнения кинетики

последние можно интегрировать численно на ЭВМ при начальных

значениях концентраций реагентов, известных из эксперимента.
Как и в работе [192], мы пользовались безразмерными
значениями числа частиц в системе.

Поскольку в начале расчетов нам известны лишь грубые
оценки констант, естественно, что кинетические данные, получаемые
на ЭВМ, не будут совпадать с опытными. Для того чтобы
приблизить машинное решение к опытным данным, при фиксированном
наборе реакций, необходимо изменить константы скоростей.
С целью автоматизации этой процедуры нами составлена

стандартная программа для ЭВМ типа М-20, реализующая метод оврагов

(см. [47, 62], а также стр. 103 настоящей книги).
Согласно этой программе, отыскиваются такие значения

констант скоростей, которые обеспечивают достижение минимума

суммы квадратов отклонений расчетных величин концентраций от

опытных. Если ошибки последних подчиняются нормальному
закону, то определяемые таким образом константы скоростей
являются наиболее вероятными для данного механизма.

Мы считаем необходимым еще раз обратить внимание на то,

что метод оврагов является нелокальным методом нахождения

минимумов функций многих переменных. Другими словами, в

районе начальных значений констант определяются все (если их
несколько) минимумы суммы квадратов отклонений, так что имеется

возможность определить координаты наиболее глубокого минимума.
Как отмечалось на стр. 102, метод оврагов наиболее эффективен
в случае отыскания минимумов так называемых «хорошо
организованных» функций. Под «хорошей организацией» в данном случае

* Значение А г ^ 0,1 часа обусловлено максимальной величиной шага

интегрирования (0,1 часа); выбор последнего мотивирован ниже.
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следует понимать то, что все константы скоростей можно разбить
на две группы, причем в одну из них войдут те константы,

изменение которых существенно меняет сумму квадратов отклонений, а в

другую
— константы, изменение которых мало влияет на

изменение суммы квадратов отклонений. Чем меньше меняет сумму

квадратов отклонений изменение константы на некоторую величину,
тем больше диапазон неопределенности этой константы, т. е. тем

больше ошибка, с которой она определяется. В настоящей работе
за ошибку констант принималась такая величина а (к), при которой
изменение к от к — а (к) до к + а (к) оставляло расчетные

концентрации в пределах 5%-ного коридора ошибок (см. стр. 111).
Перейдем теперь к методике расчета концентраций

компонентов реакции. В кинетике обычно принимается, что концентрации

активных частиц (в нашем случае Hs, Ds и SO) стационарны
практически в течение всего времени реакции. Однако для
рассматриваемой системы такая стационарность имеет место лишь при
больших временах реакции и, напротив, не существует при t < 20 час-

Поскольку абсолютные значения скоростей изменения [(D)J и [(H)sl
невелики, то при выборе достаточно малого шага *

можно записать

условия квазистационарности и для t <20 час в виде системы

нелинейных алгебраических уравнений

HWd = 0, ™ = 0, ^ = 0. (98)

Подчеркнем, что уравнения (98) справедливы только в

пределах выбранного шага интегрирования. Эта система решалась

итерационным методом Ньютона [105], причем необходимые для
решения производные соответствующих правых частей по

концентрациям активных частиц находились численно [195], что позволило

сделать программу стандартной. Система уравнений

квазистационарности решалась при тех временах облучения, для которых
имелись опытные данные по составу газовой фазы. Необходимые
для расчета величины [SOH] и [SOD] определяли по уравнениям

баланса. Полученные значения [(H)J, [D)s] и [SO]
аппроксимировали полиномом по времени

[R] = b0 + bxt + b2t\ (99)

коэффициенты которого находили методом наименьших квадратов.
Из формулы (99) следует, что при t = 0 [RJ = b0, в то время как

строго при t = 0 [R] = 0. Однако введение члена Ьо в полином

практически не сказывается на результатах расчета, поскольку
установление квазистационарного режима происходит за столь малые

времена, что изменением концентрации стабильных веществ при
этом можно пренебречь. Между тем, если положить Ьо = 0, то

* Шага, достаточно малого для соблюдения уравнений (98) с заданной
точностью.
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для удовлетворительного описания зависимости R =

ф (t)
требуется уже другая аппроксимация. Заметим, что величины

квазистационарных концентраций (H)s, (D)s и (SO) зависят от

конкретных значений констант скоростей. Поэтому по мере уточнения

последних уточнялись и концентрации активных частиц.

При такой методике расчета систему дифференциальных
уравнений кинетики удалось свести к пяти дифференциальным
уравнениям (для скоростей изменения концентраций Н2, D2, HD, SOH и

SOD). На каждом шаге интегрирования этой системы концентрации

(Н)3, (D)s и SO вычислялись по соответствующим полиномам второй
степени.

Обычно численное решение задачи Коши проводится методом
Рунге — Кутта. В процессе нашей работы выяснилось, что можно

почти в 2 раза сократить объем вычислений, не теряя при этом

точности, если для решения задачи Коши использовать алгоритм,

предложенный недавно Фелбергом [196]. Для ускорения расчетов

выбирали шаг, который обеспечивал выполнение балансовых
уравнений с точностью до 2%. Значение времени, соответствующее
такому шагу, зависело от конкретных значений констант и участка

кинетической кривой. Естественно, что минимальный шаг был

принят на начальном участке, но и при больших временах реакции
максимальная величина шага не превышала 0,1 часа.

Рассмотрим теперь результаты расчета механизмов № 1—4.

Механизм № 1 был отвергнут, поскольку при удовлетворительном
•описании экспериментальных данных константы скоростей внутри
рассматриваемых групп реакций отличались на 2—3 порядка
(нарушение требования 9), что, конечно, не имеет физического смысла.

Заметим, что в работе [192] механизм, основанный на реакциях

группы-В, также был отвергнут, но по другой причине: в связи с

тем, что радиационная деструкция гидроксильных групп
происходит с недостаточным для объяснения наблюдаемой скорости обмена

радиационно-химическим выходом (G ~ 0,1; тогда как для

исследуемого процесса G ~ 2— 5). Механизм № 2 был отвергнут,
поскольку при его расчете не удается получить результатов,

соответствующих эксперименту (см. требование 4). Существенно
наличие качественных расхождений — не удается получить

максимума, который имеется в экспериментальной зависимости

концентрации НЕ) от времени. От механизма №3 пришлось отказаться

в связи с невыполнением требований 7, 8 и 10.

Наиболее подходящим (удовлетворяющим всем

перечисленным выше требованиям) оказался механизм № 4. В связи с этим

рассмотрим результаты его расчета более подробно. Как было

отмечено выше, механизм№ 4 включает реакции групп А, D, Е, F и G.

Следовательно, для скоростей соответствующих реакций мы имеем

систему из четырнадцати дифференциальных уравнений, которая

для решения сводится (по числу реагирующих компонент) к

системе пяти дифференциальных и трех алгебраических уравнений вида
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(99). В принципе, используя уравнения баланса, можно свести

эту систему и к двум дифференциальным уравнениям. Однако мы

предпочли оставить все уравнения баланса для контроля за

результатами расчета. Чтобы больше не возвращаться к этому вопросу,

подчеркнем, что все контрольные уравнения баланса выполнялись

с ошибкой не больше 2 %. Выполнение требования 4 видно из

данных расчета, графически представленных на рис. 34. Выполнение

требования 6 обеспечивалось, как это видно из изложенного выше,

В, Ю'18атомов

Рис. 35. Зависимость количества

атомов Н (6) и D (+) на поверхности

силикагеля от количества водорода
и дейтерия в газовой фазе

А — величины 2[Н2] -f [HD] и 2[D2] -f
+[HD], В — величины [Н] и [D].
Точки соответствуют временам облучения,
указанным на рис. 34

/ 1 | |

1,00
4, Ю'*"молекул

самой методикой расчета. Выполнение требования 7
иллюстрируется рис. 35. Кстати, тангенс угла наклона прямой на рис. 35
приблизительно равен0,01, что подтверждает выполнение требования 6-
Выполнение требования 8 видно из приводимой ниже табл. 11.

Таблица И

Зависимость концентрации промежуточных продуктов (в 1(ГП еле2)
от времени облучения

t, часы

1,5
5

10
15

(Н),

0,9
1,4
2,0
2,4

2,3
1,9
1,5
1,1

so

7,9
6,8
5,6
4,9

t, часы

17

20

25

(Н)в

2,5
2,6
2,6

(D)s

1,0
0,9
0,9

so

4,7
4,5
4,7

Подчеркнем, что для проверки выполнения требования 8 важны не

абсолютные, а относительные значения концентраций *.

* Заметим, что абсолютное значение концентрации хемосорбированных
атомов водорода! [(H)s + (D)s] = (3,4 ± 0,1) . 1011 см~2, тогда как,
согласно работе [194], концентрация радиационно-индуцированных центров

адсорбции водорода на поверхности силикагеля составляет 3,3 • 10й см~2-
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Из приведенных ниже значений констант скоростей,
полученных на ЭВМ при расчете механизма № 4, видно, что требование
9 удовлетворительно выполняется. Значения констант приведены

по группам (размерность всех констант выражена в сек'1), так

как расчет был проведен для безразмерных концентраций:

Группа Л{/с1-(0,95±0,06).10-4;^Т1-(1,4±0,4).10^;/сш-
= (1,3±0,1).1(Г4

Группа /){&х=(6,7±4,5) 10"24; /сх1 = (9,9 ±2,4). 10"24; ЛХц =

= (4,2 ± 2,5) • 10~24; Лхш = (6,2 ±1,4) • 10"24}.

Группа £{&Xiv=(2,4 + 0,7).10-24; Axv = (1,0 ± 0,5) -Ю"24}.

Группа jP{fcXvi=(4,3±2tl).10"81; &Xvn = (6,2± 1,4).Ю"»1;

Группа G{AXix=(2,l±0,4).10^; *Хх - (М ±0,4).Ю"»1}.

Для проверки выполнения требования 10 необходимо знать

зависимость начальной суммарной скорости обмена от начальной

концентрации дейтерия [D2]o. При этом, поскольку в газовой фазе
при t ->- 0 находится практически только дейтерий, то суммарная
начальная скорость определяется только теми реакциями, в которых
участвует молекула или атом дейтерия и гидроксильная группа
SOH. Такими реакциями являются (I), (XI), (XIV), (XVIII)
и (XX). Последняя из них является вторичной и можно показать,

что роль ее в зависимости w0 от (D2)0 пренебрежимо мала.

Тогда, с учетом реакций (I), (XI), (XIV) и (XVIII)

L ^{kxl + ^Х1у) (SOH)o KD)-l'-o-

Поскольку в каждой точке 's^^0, то

cXVIII

LJJ2jo-, ■/Pxi +/gxiv КрИ1 I2
\ L 4/cxvm J

Имея ввиду численные значения соответствующих констант и

концентраций, нетрудно убедиться в том, что второе слагаемое под

корнем много больше первого, а после извлечения корня именно

оно определяет значение

-J- [D2l0. (102)
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Таким образом,

d[D2]
Wa = ) i/i~- lSOH]o /[D2]

dt\ f-o

(103)
и требование 10 выполняется.

В дополнение к изложенному выше заметим, что не только

отношения констант внутри групп, но и их соотношения в разных

группах кажутся вполне разумными. Так, например, среди
констант скоростей нерадиационных процессов максимальное значение

имеют константы рекомбинационных процессов. К сожалению,
истинные значения констант группы А определить было нельзя,

поскольку в экспериментах [192] мощность дозы неизвестна. По-

видимому, только рассмотрение новых данных [197] позволит

уточнить и зависимость скорости обмена от мощности дозы и значения

констант скоростей реакций группы А. Необходимо уточнить
также возможность включения в рассматриваемый механизм

вторичных реакций группы С.
В целом нам представляется интересным тот факт, что при

машинном расчете наиболее вероятным оказался именно тот механизм,

который был выбран экспериментаторами [192], хотя они, конечно,

не располагали ни значениями констант скоростей отдельных

реакций, ни даже соотношениями между ними. Итак, развитая нами

методика расчета с учетом всей совокупности общих и частных

контрольных требований 1—10 позволила выбрать наиболее
вероятный механизм конкретного гетерогенного радиационно-хими-
ческого процесса. Одновременно рассчитаны константы скоростей
всех 14 стадий, входящих в найденный наиболее вероятный
механизм реакции.

Из анализа наших результатов следует, что при кинетическом

расчете на ЭВМ той или иной реакции выполнение только общих

контрольных требований недостаточно для выбора механизма *.

При расчете кинетики сложных реакций задача физико-химиков
состоит, в частности, в том, чтобы найти, сформулировать и про-

ранжировать аналоги приведенных выше для нашей конкретной
задачи частных контрольных требований.

§ 5. Проверка методики выбора наиболее вероятного
механизма сложной химической реакции
на примере модельной задачи

Целью настоящего раздела является демонстрация
возможностей и ограничений предложенной выше методики выбора наиболее
вероятного механизма сложной химической реакции на ЭВМ

* К сожалению, это обстоятельство не учитывалось в некоторых работах,
посвященных расчетам химической кинетики на ЭВМ (см., например,
[198]).
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путем решения модельной (или, как иногда говорят,

«синтетической», задачи. Модельная задача, используемая для методических

целей, представляет собой исследование набора альтернативных
механизмов, один из которых принимается за истинный.

Константы скоростей стадий, составляющих этот механизм предполагаются
полностью известными (приняты нами), т. е. известны их предэк-

споненциальные множители и энергии активации. Казалось бы, в

ситуации, когда истинный механизм и константы скоростей всех

стадий известны, решать нечего — что заложили, то и получили.

Дело, однако, обстоит иначе. Расчет по истинному механизму
является математическим аналогом физико-химического
эксперимента. В результате него получаются кинетические данные, в нашем

случае
— зависимости концентраций различных продуктов от

времени. Задача же состоит в том, чтобы, используя общие
контрольные требования и формулируемые в данном случае на основании

математического эксперимента частные контрольные требования,
уверенно отсечь все механизмы, альтернативные истинному. Кроме
того, расчет, в котором используется метод оврагов Гельфанда —

Цейтлина, при обработке данных математического эксперимента
по истинному механизму должен показать эффективность
упомянутой математической методики применительно к решению задач
химической кинетики, приводя к истинным значениям констант,

даже если в начале расчета взяты их «испорченные» значения.

Выяснив, какие именно цели могут быть достигнуты при решении
модельной задачи, сформулируем теперь те требования, которым
она должна удовлетворять.

Задача должна быть построена на абстрактном химическом

материале. Это значит, что у исследователя не должно возникать

конкретных химических ассоциаций, чтобы никакие кинетические

теории, взгляды той или иной физико-химической школы не

довлели над ним при выборе альтернативных механизмов и

составлении и ранжировке частных контрольных требований. Заметим
также, что для проверки методики необходимо априорное знание

истинного механизма, что практически невозможно в настоящее

время для сложных многостадийных химических реакций. Так,

например, даже для наиболее изученной реакции окисления

водорода в литературе нет единой точки зрения относительно ее

полного механизма. В тех же случаях, когда истинный механизм может

считаться известным (реакция хлорирования водорода), обычно нет

разумных альтернатив. В нашей модельной задаче для того,
чтобы подчеркнуть ее абстрактность для обозначения веществ,

использованы просто буквы греческого алфавита.
Модельная задача должна быть типичным представителем

сложных многостадийных реакций, т. е. содержать
альтернативные механизмы, включающие достаточное число элементарных

стадий (от 6 до 10).
Значительное увеличение числа стадий (например до 16—18)
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тте имеет уже принципиального значения, приводя лишь к

неоправданному расходу машинного времени. Сокращение числа

стадий до 2—3 делает задачу тривиальной.
В модельной задаче нецелесообразно рассматривать

константы скоростей, отличающиеся друг от друга на много порядков,

поскольку при этом возникают определенные вычислительные

трудности, не имеющие принципиального значения в

рассматриваемой проблеме (см. стр. 17). Кроме того, модельной задаче

должен соответствовать математический эксперимент,

позволяющий получить возможно более полную информацию о физико-
химических закономерностях процесса для составления частных

контрольных требований. Это необходимо для уверенного
отбрасывания менее вероятных альтернативных механизмов, а также для

рассмотрения ситуаций, возможных при недостатке тех или иных

экспериментальных данных и соответствующих им частных

контрольных требований *. И, наконец, модельная задача должна быть

типичной также в следующих отношениях: в общем случае на

кинетических кривых могут присутствовать особые точки

(максимумы, минимумы, точки перегиба); каждая отдельная точка

получается в изотермических условиях, но процесс исследуется при
различных температурах; степени превращения исходных веществ
не слишком малы, так как в реальных задачах это необходимо для

проведения анализов; должно быть представлено большое число

типов частиц, что характерно для сложных реакций (у нас 6);
должны быть приняты типичные соотношения реагентов (у нас

1:1: 1); реакция должна протекать в кинетической области.

В соответствии с этими требованиями нами была составлена

следующая модельная задача.

Пусть имеется набор элементарных стадий I — IX

группа А

группа В

группа С

<22Н

р2н

ар-

аг-

РгН

аР-

-Р2-

-Т2-

-г2

|-ар

har

hPr

Наг

CQ-

h Pr

(I)

(И)

(III)

P2 (IV)

Г2 (V)

Г2 (VI)
■ Pr (vii)
- P2 (VIII)

-r» (ix)

Принято, что группы А, В и С исчерпывают все реакции,
возможные в этой системе (так, например, принято, что не идут реакции

* Процедура такого рассмотрения будет пояснена на конкретных примерах.
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типа а 2 -*~ 2а или реакции обратные С). Принято, что а у
идентично уа, анализы всех веществ являются равноточными,

относительная ошибка анализа составляет ±5% (при обсуждении
результатов рассматриваются случаи, когда анализируется различное
число компонентов системы). Принято также, что реакция
проводится при постоянных давлении и объеме, численные значения

которых зависят от температуры проведения опытов.

Считается, что истинный механизм процесса включает

элементарные стадии I, II, V, VI, VII, IX, значения констант скоростей
которых равны соответственно к\ = 106 ехр (—20000 /RT), ка =
= 7,5.105 ехр (-18000/ДГ), ку --= 5-105 ехр (-19000/ДГ); feVi =

-5.10"5 ехр (—17000/ДГ); Лун = 5.10е ехр (- 20000/ЯГ),
/cix = 107ехр(— 22000/RT); размерность всех констант выражена
в л*молъ~1*сек~±.

Было принято решение провести 50 основных экспериментов

(по 10 экспериментов при каждом из пяти значений температур),
причем каждое значение должно отличаться от другого на 50°.

Такое подробное исследование, как будет видно из дальнейшего,
оказывается весьма полезным при отборе альтернативных
механизмов. Принято, что в исходной смеси содержатся только

вещества а 2, {52 и у2 в отношении 1:1:1 при абсолютных значениях

концентраций 1 молъ/л. Считается, что все постулаты обычной
кинетики выполняются и дифференциальные уравнения,

соответствующие элементарным стадиям I—IX, могут быть записаны в

стандартной форме.
Аналитическое решение системы многих обыкновенных

дифференциальных нелинейных уравнений такого типа не может быть

получено [30, стр. 45], приходится прибегать к численному их ин-

т грированию на ЭВМ. Как указывалось, первым этапом при

решении модельной задачи является проведение математического

эксперимента, который, как и физико-химический эксперимент,
должен дать исследователю основную информацию о кинетике процесса.
В нашем случае для этого нужно решить систему дифференциальных
уравнений, описывающих скорость изменения концентраций всех

реагирующих веществ. Эта система должна быть составлена на

основе механизма, принятого нами за истинный

d
dt

(«a)

(P«)

(T.)

(dp)

(»T)

(Pr)

—/C]
— h

0

2'fi

0

0

-An

0

— An

0

2Ац

0

k\

0

Av
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При численном интегрировании этой системы с принятыми выше

значениями констант скоростей и начальных концентраций в

интервале 800—1000° К были получены расчетные кривые с = / (t)
для всех компонентов системы (рис. 36). Поскольку было принято,
что экспериментальная относительная ошибка при анализе проб
составляет +5%, то при гауссовом законе распределения этих

ошибок можно найти расположенные у этих кривых
«экспериментальные» точки, также показанные на рис. 36.

В соответствии с принятой нами методикой перед составлением

альтернативных механизмов необходимо на основе

экспериментальных данных определить систему общих и частных

контрольных требований, а также проранжировать последние. Для нашей

задачи эти требования могут быть представлены в следующей
форме.

СБЩИЕ КОНТРОЛЬНЫЕ ТПБСЕ^ЕЕЯ

1. Экспериментальные кривые с = / (t) должны

воспроизводиться в пределах 5%-ного коридора ошибок.

2. Константы скоростей элементарных стадий и концентрации

веществ не могут иметь отрицательных значений.

3. Константы скоростей элементарных стадий являются

функциями только параметров распределения*.
4. Уравнения баланса числа частиц каждого сорта должны

выполняться во всех элементарных стадиях **.

В нашей задаче эти уравнения имеют вид

(а)0 = 2(а2) +аР + ау,

(Р)о = 2 (р2) + ар + Рт,

(7)о - 2 (у2) + ау + PY.

5. Поскольку известно (принято), что энергия связи во всех

частицах составляет не менее 25 ккал/молъ, то для констант

каждой из элементарных стадий должно выполняться неравенство

Еа <^ 25 ккал/молъ.

* В случае равновесного (максвелл-больцмановского) распределения таким

параметром является температура.
** Как отмечалось (стр. 131), это единственное контрольное

требование,проверка выполнения которого проводится до выбора механизмов при помощи
ЭВМ.
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ЧАСТНЫЕ КОНТРОЛЬНЫЕ ТРЕБОВАНИЯ

6 При достаточно большом времени реакции химический

состав системы становится постоянным и кинетический расчет

любого механизма должен приводить при больших временах

к практически постоянному для данной температуры составу

смеси. А

7. Система физически равновесна, и уравнение Аррениуса

должно выполняться для каждой из констант скоростей

элементарных стадий.

Рис. 37. Зависимость
логарифма времени достижения

максимума концентрации ау от

обратной температуры

8. Поскольку при ^ = 0 в системе имеются только частицы

вида а2» р2> 72» то концентрации их должны убывать во время

процесса.
9. В соответствии с экспериментальными данными на

концентрационной кривой [ау] = / (t) имеется максимум, положение

которого с повышением температуры смещается в область меньших

времен, причем логарифм времени достижения максимума связан

линейной зависимостью с обратной температурой (рис. 37).
10. На концентрационной кривой [$у] = / (t) имеется точка

перегиба, положение которой смещается в область меньших

времен при повышении температуры.
11. Эффективная энергия активации, определяемая по

зависимости начальной скорости (w0) расхода исходных веществ а 2> Рг>
у2 от ЦТ должна составлять соответственно 20,16 и 19 шал/молъ,

как это следует из анализа опытных данных (рис. 38).
12. Эффективная энергия активации, определяемая по

зависимости начальной скорости (wQ) накопления продуктов реакции

аР, а7> Py от обратной температуры, должна составлять

соответственно 16, 20 и 32 шал/молъ (рис. 39).
Проранжируем теперь частные контрольные требования. На

первое место (ранг 7) поставлено контрольное требование 7 —

требование физической равновесности (наличия температуры),

которое всегда должно выполняться в обычных гомогенных и гете-
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Рис. 38. Зависимость
логарифма начальной скорости
расхода исходных веществ от
обратной температуры

1 — сс2; 2 — (52; 3 — у2

Рис. 39. Зависимость

логарифма начальной скорости

накопления продуктов реакции от

обратной температуры
1 — сб|3; 2 — ау; з — 0г

рогенны х процессах при Еа^> RT в чисто кинетической области

протекания реакции. Поясним, что при расчете альтернативных

механизмов константы скоростей элементарных стадий
подбираются на ЭВМ для каждой температуры без использования уравнения

Аррениуса, которое остается для контроля. Контрольному
требованию 6 присваивается ранг 6. Дело в том, что постоянный состав

смеси за «экспериментальные» времена реакции наблюдается
практически лишь при самой высокой из исследованных температур —

1000° К. При всех остальных температурах есть лишь тенденция

такого рода. Поэтому требэвание 6 может служить для проверки
поведения системы в рамках того или иного механизма при
расчете его на ЭВМ для времен реакции, превышающих в

несколько раз «экспериментальное» время.
Мы особенно выделяем первые два требования, не связанные

непосредственно с величинами, используемыми при расчете.

На третье место (ранг 5) поставим контрольное требование 9.
Казалось бы, любой механизм, удовлетворяющий контрольному
требованию 1, должен автоматически удовлетворять и

требованию 9. Однако при низких температурах форма максимумов

такова, что, оставаясь в пределах коридора ошибок, можно

описать эксперимент, значительно смещая положение максимума вдоль

оси абсцисс. В связи с этим наличие в эксперименте

зависимости ]п£тах —1/Г придает требованию 9 дискриминирующую силу.

Присвоение требованию 10 ранга 4 обусловлено тем

обстоятельством, что само наличие перегибов является качественным

результатом, не используемым в расчете. Этот качественный

результат не обязательно получается при расчете, так как описание
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эксперимента возможно и в отсутствие точек перегиба за счет

достаточно большой ширины коридора ошибок.
Что касается схожих требований И и 12, то им приписывается

одинаковый при нашей системе ранжирования дробный ранг 2,5.

Такой относительно низкий ранг, приписанный этим требованиям,
объясняется двумя причинами. Во-первых, для определения

эффективной энергии активации мы пользовались кинетическими

кривыми (см. рис. 36), по которым проводили и «подгонку»
механизмов. Во-вторых, для определения Е пришлось прибегнуть к

проведению касательных к начальным участкам кривых, так что

последующее построение графиков (см. рис. 38, 39) в координатах

Аррениуса основывалось не на самих «экспериментальных»

результатах, а на результатах их предварительной обработки.
Рассмотрев контрольное требование 8, мы пришли к выводу,

что оно не обладает информативностью, поскольку не содержит
никаких иных данных, кроме использованных в расчете. Таким

образом, этому требованию следует приписать ранг нуль, тем самым

исключив его из списка частных контрольных требований. В

связи с этим число этих требований и соответственно их ранги

уменьшаются на единицу. Окончательно имеем следующее:

Ранг 6 5 4 3 1,5 1,5

Требование ... 7 6 9 10 И 12

Вообще говоря, черновую работу, в результате которой
одному из требований был приписан нулевой ранг, а ранги
остальных требований были уменьшены на единицу, можно было бы не

показывать в нашей книге. Однако, рассматривая анализ

модельной задачи в известной мере как методический образец, мы сочли

целесообразным показать типичные ситуации, возникающие при

ранжировке частных контрольных требований.
Составим теперь альтернативные механизмы. При этом будем

руководствоваться следующими соображениями. Не имеет смысла

рассматривать механизмы, в которых все неправильно, ибо они

заведомо будут отброшены. Мы решили сделать более или менее

типичные ошибки, т. е. допустить отклонение от истинного

механизма лишь в одной стадии для каждого из альтернативных

механизмов, кроме одного, в который включить все 9 возможных

элементарных стадий. Распределение стадий по различным

механизмам дано в приводимой ниже табл. 12 (истинный механизм имеет

нулевой номер).
Из рассмотрения данных табл. 12 видно, что в механизме № 1

допущена одна ошибка в группе стадий А; во втором механизме

допущена одна ошибка в группе стадий В; в третьем и четвертом
механизмах допущено по одной (но разные) ошибке в группе
стадий С и, наконец, в механизме № 5, хотя и допущено три ошибки
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(по одной в каждой группе), но использовано все 9 возможных

стадий.
Мы полагаем, что учли все характерные и одновременно

аиболее трудно различимые (от истинного) механизмы.

Таблица 12

Распределение стадий по различным механизмам

№ механизма

0

1

2

3

4

5

Стадия

I

+
—

+

+

+

+

II

+
+
+
+
+

+

III

+
—

—

—

+

IV

—

+
—

+

V

+

+
—

+

+

+

VI

+

+

+

+

+

+

VII

+
+
+

+
—

VIII

—

—

+

+

+

IX

+
+
+
—

+
+

Дальнейшая процедура аналогична описанной в предыдущем

разделе. Для каждого из механизмов составляли систему

дифференциальных уравнений кинетики, которую численно

интегрировали методом Фелберга [196] с начальными значениями

констант, в несколько раз отличавшимися от истинных.

Константы стадий, отсутствовавших в истинном механизме,
задавались аналогичными другим константам в данной группе. В числе

испытанных таким образом механизмов, был, разумеется, и

нулевой механизм, при расчете которого также были взяты

«испорченные» по сравнению с известными начальные значения

констант.

Поиск констант для каждого из механизмов производился с

таким расчетом, чтобы достигала минимума сумма квадратов
отклонений «опытных» значений концентраций, приведенных на

рис. 36, и концентраций, получаемых при численном

интегрировании дифференциальных уравнений кинетики,

соответствующих данному механизму. Определение координат минимума

проводилось методом оврагов Гельфанда — Цетлина [47, 109],
подробно описанным выше (стр. 101).

Для иллюстрации поиска констант по методу оврагов

приведен рис. 40 построенный для нулевого механизма при 900° К

в координатах kyj — к\. Этот упрощенный (в одной плоскости)
рисунок показывает расположение оврага в плоскости наименее

чувствительных констант (сплошная линия). Цифры у точек

соответствуют увеличенной в 100 раз сумме квадратов отклонений
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Рис. 40. Графическое изображение метода оврагов в

координатах &yj — &1Х при расчете по нулевому механизму

расчетных величин от опытных. Пунктирная линия показывает

начальную операцию
— градиентный спуск. Из рассмотрения

приведенных на этом рисунке данных видно, что найденный нами

методом оврагов минимум не мог бы быть достигнут при
использовании локальных методов. При использовашш последних был

бы найден менее глубокий минимум в районе четвертой точки.

Сопоставим теперь результаты расчетов различных
механизмов с общими контрольными требованиями. Напомним, что в

соответствии с основными принципами выбора механизма (см.
стр. 134) невыполнение хотя бы одного общего контрольного
требования позволяет дискриминировать (отбросить) любой механизм.

В первую очередь проверим, в какой мере расчетные данные

соответствуют требованию 1.
На рис. 41, а, б и на рис. 42, а, б показано, что для

механизмов № 1 и 4 не удается подобрать значений констант,

обеспечивающих попадание расчетных значений концентраций в

допустимый коридор ошибок. Значения критерия Фишера при этом,

вычисленные по формуле 55 (стр. 116), также

свидетельствуют о малой вероятности механизмов № 1 и 4. Из данных,

приведенных на рис. 41, а, видно, что большие отклонения

расчетных и «опытных» значений концентраций наблюдаются на

начальных участках кривых для «Р и Ру. Для (Зу, кроме того, велики

отклонения и в конце процесса. На рис. 41, б видно, что при

температуре 900° К на начальных участках кривых для аР, аТ

отклонения «опытных» и расчетных значений концентраций далеко
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выходят за допустимый коридор ошибок. Рассматривая схему

возможных элементарных реакций (I) — (IX) в связи с

результатами расчета механизма № 1» отметим, что начальные расчетные

концентрации аР занижены против опытных, тогда как для |$у
они завышены, что указывает на необходимость включения

дополнительного канала образования а|3 в начальных условиях и

выключение соответствующего канала для |3у. Если провести
такие исправления в группе А, то мы получим нулевой, т. е.

истинный механизм. Аналогично можно показать, что анализ

результатов расчета любого механизма имеет значение не только для

опознавания неверного механизма, но и для позитивной цели
—

выдвижения более вероятной схемы процесса. При рассмотрении
модельной задачи мы на этом вопросе далее останавливаться не

будем.
Что касается механизма № 4, то расхождения расчета и

«опыта», показанные на рис. 42, а и б, не нуждаются в

комментариях.

Благополучно обстоит дело с выполнением общих
контрольных требований при расчете нулевого механизма, механизмов № 2

и 5 *. Эти три механизма должны далее проверяться при помощи
частных контрольных требований.

Нетривиальная ситуация возникла при расчете механизма

№ 3. Сопоставляя данные «эксперимента» и расчет, можно

убедиться в том, что они хорошо согласуются лишь при низких

температурах (800—900° К), а при высоких (950, 1000° К) расчетные
данные выходят за пределы коридора допустимых ошибок.

Спрашивается, как нужно поступать в таких случаях? Поскольку до

проведения специального анализа нельзя утверждать, что в

исследуемом температурном интервале «работает» один и только один

механизм, то отвергнуть механизм, хорошо описывающий
результаты лишь в какой-то части этого интервала, нельзя.

Действительно, может оказаться, что именно в исследуемом температурном

интервале происходит смена механизмов процесса. При этом под

«сменой механизмов» понимается появление в совокупности

элементарных стадий новых процессов, скоростью которых на другом

участке интервала можно было пренебречь; и, наоборот,
некоторыми стадиями, ранее игравшими большую роль, можно

пренебречь в новых условиях. Можно говорить об этом, используя

термин «смена лимитирующей стадии». Итак, в общем случае

механизмы, полностью или частично (не во всем температурном

* При расчете нулевого механизма были, как отмечалось выше, взяты не
известные значения констант, а «испорченные» величины. В результате
поиска констант методом оврагов были получены расчетные их значения,

которыми мы и пользуемся далее.
В этом смысле нулевой механизм не имеет никаких преимуществ перед

другими. Сопоставление расчетных и «истинных» значений констант

приведено в конце этого параграфа.
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интервале) удовлетворяющие общим контрольным требованиям,
должны быть допущены к дальнейшим испытаниям. В нашем

случае это относится к нулевому механизму и к механизмам № 2,
3 и 5.

Отметим, что проверка выполнения общего контрольного
требования 3 нами еще не производилась *. Не забывая об этом

обстоятельстве, перейдем теперь к сопоставлению результатов
расчета с частными контрольными требованиями. Такая

последовательность целесообразна для экономии машинного времени,

поскольку незачем рассчитывать с другими начальными

условиями механизм, уступающий своим конкурентам по выполнению

частных контрольных требований. Заметим, что для механизма,

описывающего эксперимент не во всем исследованном
температурном интервале, частные контрольные требования могут не

выполняться там, где этот механизм противоречит опытным данным.

При этом такое невыполнение требований не учитывается при
количественной оценке вероятности того или иного механизма

(см. § 3 этой главы).
Сопоставляя данные расчета и частные контрольные

требования, мы убедились в том, что нулевой механизм и механизм № 5

хорошо им удовлетворяют во всем интервале температур. Что

касается механизма Y»3, то он также хорошо удовлетворяет всем

частным контрольным требованиям в интервале 800—900° К (т. е.

там, где он удовлетворяет и общему контрольному
требованию 1).

Выяснилось также, что механизм № 2 согласуется с частным

контрольным требованием 6 лишь при900—1000° К (табл.13). Таким

образом, мы имеем два механизма, пригодных во всем

температурном интервале, и два механизма, «работающих» лишь на

ограниченном его участке. Указанная выше возможность смены

механизмов при повышении температуры (в нашем случае механизма

№ 3 на механизм № 2) может реализоваться при существенном
изменении концентрационных соотношений или если эти

механизмы отличаются стадиями с существенно различной энергией
активации.

Поскольку для механизмов № 2 и 3 практически никаких

отличий в концентрационных соотношениях не имеется, то

необходимо проверить, каковы энергии активации стадий,
определяющих отличие этих двух механизмов. Такими стадиями для
механизмов № 2 и 3 являются стадии (IV) и (V) в группеi? и (VIII)
и (IX) в группе С. Вообще говоря, поскольку в группы
объединяются однотипные реакции, большого различия энергий
активации для каждой из групп ожидать нельзя. Однако эти различия

* Расчет проводился только для смеси а> : |3-2 : Y2 = 1 : 1 : 1 и не

проверялось, остаются ли неизменными константы скоростей при изменении
состава исходной смеси.
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могут быть относительно велики *, а если они наблюдаются в двух

группах сразу, различие в скоростях может быть заметным.

К сожалению, для такого рода анализа требуется достаточное

удаление от переходной области, которая, если в нашем случае

вообще существует, лежит вблизи 900° К. Не располагая
данными в широком температурном интервале, мы лишены

возможности дискриминировать механизмы № 2 и 3 по определению

различий в энергии активации стадий, ибо в переходной
области точность определения констант скоростей стадий обычно
невелика.

В связи с изложенным необходимо проверить остававшееся

пока вне «эксперимента» общее контрольное требование 3 для всех

четырех механизмов: нулевого, №2,3 и 5. В нашей задаче, когда
известен анализ всех продуктов и мы располагаем полным набором
всех индивидуальных веществ, участвующих в процессе, для

проверки контрольного требования 3 мы можем выбрать
произвольную комбинацию исходных соединений. Из последующего
изложения будет ясно, почему мы остановились на исследовании
новой исходной смеси, состоящей из а2, р2, Тг и дополнительно ар.
Естественно, что необходимо было выяснить, какая

концентрация добавки аР достаточна для уверенной проверки выполнения

требования 3. С этой целью был поставлен математический

эксперимент, в котором выяснилось, при какой добавке аР к

исходной смеси при полученных ранее значениях констант будут
наблюдаться выходящие за коридор ошибок отклонения

концентраций различных компонентов, например при расчете по

механизмам нулевому и № 2. Такая оценка величины необходимой
добавки того или иного вещества требует незначительных затрат

машинного времени и весьма целесообразна при решении не

только модельной, но и практических задач. В результате такого

расчета было выяснено, что оптимальной следует считать добавку ар
концентрацией 1 моль/л, т. е. желательно иметь отношение

концентраций а2 : р2
*

72* ^Р = 1:1:1:1 (рис. 43, 44).
В приводимой ниже табл. 14 представлены значения констант

скоростей элементарных стадий, рассчитанных для нулевого
механизма при различных начальных условиях. В этой же таблице
приведены «истинные» значения констант при различных

температурах, поскольку нулевой механизм удовлетворяет всем

контрольным требованиям в температурном интервале 800—1000° К*

* Как, например, для реакций

и

Н + GH (СНз)з -> Н2 + С (СН3)з,

принадлежащих к одной группе реакций,
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В табл. 14 и 15 приведены аналогичные данные для

механизмов № 5, 2 и 3. При этом для механизма № 5, также

претендовавшего на роль лаиболее вероятного при всех температурах,

представлены данные для крайнего значения температуры, т. е. для

1000° К. Для механизмов № 2 и 3 в табл. 15 представлены данные,

0,0?.

Рис. 43. Расчет концентраций исход-

ных веществ по конкурирующим
механизмам нулевому и № 2 при

добавке [сф]0 = 1 моль/л

п _ а2; б — 32; в — у2 Точки
—

математический эксперимент. Цифры — номер

механизма

Рис. 44. Расчет концентраций
продуктов реакции по конкурирующим

механизмам нулевому и № 2 при
добавке [ар]0 = 1 моль!л

а — а|3; б — а-у; в — Зт- Точки —

математический эксперимент. Цифры на

кривых — номер механизма

позволяющие дискриминировать их в пределах именно того

температурного интервала, в котором каждый из них мог

рассматриваться как возможный конкурент.

Рассмотрим теперь данные, приведенные в этих таблицах.
Из данных табл. 14 можно заключить, что, во-первых, значения

констант скоростей всех элементарных стадий, совокупность которых

образует нулевой механизм, остаются неизменными (в пределах

95% доверительного интервала) при разных начальных условиях.

Таким образом, нулевой механизм (не отличающийся в нашем

случае от истинного), как выдержавший проверку по всем

контрольным требованиям, следует считать наиболее вероятным

механизмом рассматриваемого процесса в исследованном

температурном интервале. Во-вторых, сравнивая приведенные в табл. 14

«истинные» и расчетные (при разных начальных условиях)
значения констант, мы видим, что при расчете был найден не

произвольный, а совпадающий с истинным (в пределах ошибок) набор
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Таблица 14

Результаты определения методом оврагов констант скоростей,
соответствующих «истинному» механизму реакции

Константа

2

3

4

*п 1

2

3

4

ку 1

2

3

4

*VJ 1

2

3

4

2

3

4

*ix 1

2

3

4

800° К

3,4

3,4

3,3

6

9,1

9,7

9,5

8

3,2

5,4

5,4

40

11,4

10,7

10,6

84

17,2

16,3

17,5

8

9,8

9,9

8,9

70

850° К

7,2

7,2

7,0

6

17,7

18,8

17,8

8

6,5

8,6

8,6

30

21,3

26,5

21,9

20

36,0

36,7
v

35,9
12

22,1
20,1
19,0
25

900° К

13,9
12,5
12,4
7

31,9
34,8
34,4
8

12,2
10,2
10,2
40

37,2
28,7
29,8
20

69,6
79,6
69,3
10

45,5
70,9
60,2
13

950° К

25,1
22,9
23,9
7

54,2
62,1
61,3
9

21,3
24,5
24,5
30

61,4
57,9
57,9
14

125
133
130
10

86,9
118
НО
15

1000' К

42,6
36,1
36,0
8

87,4
81,а-
81,1
9

35,2
41,8
41,8
30

96,4
80,3
80,3
12

213
189
188
40

156
147
147
12

Примечание. 1 — <<истинное» значение константы; 2 —

значение константы, подобранное при начальных условиях

<*2 : рг : ТГ2 == 1 : 1 : 1; 3 — значение константы, подобранное при
начальных условиях (Хг: Зг • Тг : <хр = 1 : 1 : 1 : 1; 4 — ошибка в

значении констант (отн. %), определенная, как указано на стр.103.

шести констант. Это, как мы полагаем, является серьезным

аргументом, показывающим преимущества метода оврагов Гель-

фанда — Цетлина как нелокального способа поиска значения

наиболее глубокого минимума функции многих переменных и его

координат, которыми в нашем случае являются константы

скоростей элементарных стадий.
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В табл. 15 приведены данные, позволяющие дискриминировать

указанные механизмы в связи с тем, что константы скоростей
некоторых элементарных стадий оказались зависящими от

концентраций. Это является нарушением общего контрольного
требования 3, которое, как выясняется, является исключительно

важным и действенным инструментом резекции ложных

альтернативных механизмов. Это требование необходимо всегда иметь

в виду при решении практических задач. В принципе

дискриминация этих механизмов может быть сделана и специальным

математическим экспериментом, аналогичным применяемому физико-
химиком (при наличии соответствующих веществ). Речь идет об

исследовании зависимости начальных скоростей образования $у
и расхода р2 от концентрации добавки аР- Результаты такого

эксперимента представлены на рис. 45, а, б (расчет по истинному

механизму). Видно, что

(порядки реакций по аР соответственно нулевой и первый).
Из этого результата следует, что не протекает стадия (III)

(иначе прямые на рис. 45, а не проходили бы через начало

координат), а также не участвует в процессе стадия (IV), ибо в противном
случае ситуация, показанная на рис. 45, б, не могла бы иметь места.

Таким экспериментом можно дискриминировать любой механизм,
учитывающий эти стадии (т. е. механизмы № 1, 2 и 5). Здесь нам

особенно хочется отметить возможность дискриминации
механизма, учитывающего все стадии, использованные при составлении

задачи.

Итак, написание всех возможных стадий и представление
механизма в виде их совокупности не гарантирует выполнения

общих и частных контрольных требований и не выдерживает
проверки при помощи дополнительного эксперимента. Таким образом,
казавшийся естественным и не требующим эксперимента путь
составления механизма из совокупности всех мыслимых стадий не

имеет никакого смысла. Тем самым мы еще раз подчеркиваем то

обстоятельство, что нет способа нахождения наиболее вероятного
механизма в отсутствие экспериментальных данных. Следует
подчеркнуть также, что наиболее вероятный механизм реакции может

быть установлен и без использования ЭВМ, однако в этом случае
исследователь должен как располагать чистыми компонентами

(в том числе и теми из них, которые являются промежуточными
и, возможно, лабильными веществами), так и уметь анализировать
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все продукты реакции. Так,
например, в рассмотренной
нами модельной задаче путем
составления различных

бинарных смесей мы могли бы

не только установить

наличие протекающих в системе

стадий реакции, но и

определить значения

соответствующих констант скоростей,
используя традиционные

методы обработки
экспериментальных данных.

Действительно, смешивая вещества

р2 и 72, мы убедились бы в

том, что стадия III

отсутствует, так как при этом состав

исходной смеси не менялсн

бы во времени. Аналогичное

заключение должно вытекать

также из опытов с чистым ар
[отсутствие стадии (IV)] и со

смесью аР и Ру [отсутствие
стадии (VIII)]. В опытах с

чистым Ру можно было бы

убедиться в протекании

стадии (VI) и определить

константу скорости этой

реакции. Подобный подход

позволяет определить и константы

скоростей остальных

протекающих в системе

элементарных стадий.
Заметим однако, что

описанная ситуация является

скорее редким исключением,

чем правилом, поскольку
обычно механизмы

химических реакций включают

стадии с участием лабильных

веществ *, получение

которых в чистом виде и

достаточных концентрациях часто

* Особо сложная ситуация имеет

место в гетерогенно-каталитичес-
ких процессах.
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Рис. 45. Зависимость начальных

скоростей образования продукта реакции

ру (а) и расхода исходного вещества рг
(б)]от добавки оф.
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бывает практически невозможно. Кроме того, чисто

физико-химический подход к проверке механизма требует
проведения большого числа экспериментов. Именно этими

обстоятельствами и объясняется отсутствие достоверной
информации о механизме сложных химических реакций. Предлагаемая
методика, объединяющая физико-химический эксперимент с

обработкой его на ЭВМ, позволяет не только существенно снизить

затраты экспериментального времени, но и ставить задачи,

решить которые практически невозможно без вычислительной
техники.

В задаче об H-D обмен мы отмечали как типичную ситуацию,
в которой неизвестны константы скоростей элементарных стадий
и концентрации промежуточных продуктов. Однако в модельной
задаче мы пока рассматривали случай с полным анализом

продуктов. Это было сделано для возможно более жесткой проверки
методики. Теперь, убедившись в ее возможностях, рассмотрим
решение модельной задачи в том случае, когда проводится анализ

только а2, Р2 и у2, а аР, ау и Ру не анализируются и не могут быть

получены в чистом виде для использования в каких-либо
дополнительных экспериментах. В этом случае очевидно, что для расчета

нужно задаться какими-то значениями концентраций
промежуточных (не анализируемых количественно) соединений. В нашей

модельной задаче это нетрудно сделать, поскольку число неана-

лизируемых веществ не превышает числа анализируемых и,

следовательно, из системы общих уравнений баланса (см. контрольное
требование 4) нетрудно найти текущие значения концентраций
промежуточных веществ. Так, например, для концентрации ау
имеет место равенство

= Цос2]о - [Psb + iTslo) - ([<*2) - 1Р2] + Ы). СЮ5)

Аналогичные выражения могут быть получены также для fa PJ
и [p7l- Дальнейшая процедура расчета и составления

контрольных требований не претерпевает каких-либо изменений.

Дискриминация оставшихся после первого рассмотрения

механизмов, № 0,2, 3 и 5 может быть сделана следующим
образом. Нужно проверить выполнение контрольного требования 3,
изменив начальные концентрации продуктов. Мы уже убедились
в силе этого требования, ибо предыдущее рассмотрение показало,
что по крайней мере одна из констант элементарных стадий не

сохраняется постоянной, если выбран неверный механизм.

Подчеркнем, что использование этого исключительно важного

контрольного требования для сложных химических реакций
невозможно без применения ЭВМ.

Механизм № 5, как уже отмечалось,может быть легко

дискриминирован при изучении поведения бинарной смеси.

Эксперимент, необходимый для дискриминации механизмов

№ 2 и 3, целесообразно наметить после анализа кинетической
схемы и соответствующей системы кинетических уравнений. Сог-
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ласно совокупности стадий, составляющих нулевой механизм,
jvjo 2 и 3 (табл. 12), напишем для каждого из них уравнения для

скоростей изменения концентраций анализируемых продуктов

dt
~

— fa [o(2] [|32] — кп [а2] [Т2] + ky [ay]2 + куц [оф] [ay]
— h [a2] [P2] — ku [a2] [y2] -f uIV [a[i]2 + /cVii [оф] [ay]

[P2] — Ац [a2] [y2] + /cv [осу]2 -f- куц [ap] [ay]

(106)

[-£i[a2[[P2] + /«vilPr]2

tft

[p2] + kyi [pr]2 + ftvm («PI

(107)
—An [»2] [Til + *v [яг]2

- Ли [а2] [г,] + kv[ay]2 + AvrlPr]1 + fcx t«Tl

(108)

В системах уравнений (106—108) верхние строчки относятся к

нулевому механизму, средние — к механизму № 2 и нижние к

механизму № 3. Нетрудно убедиться, что только в уравнении (107)
все три механизма имеют отличающиеся друг от друга правые
части. Отсюда следует, что именно в исследовании скоростей
расхода р2 нужно искать ключ к решению вопроса о выборе из этих

механизмов наиболее вероятного. Дискриминировать нулевой
механизм и механизм № 2 нетрудно в бинарной смеси ос2 + р2»
так как реакция либо пойдет до конца (нулевой механизм), либо
будет обратимой (механизм № 2). Наиболее сложный и общий
случай — наличие двух механизмов, выбор между которыми
путем составления бинарной смеси исходных веществ не

представляется возможным. Именно так обстоит дело с механизмами

нулевым и № 3. Здесь следует привлечь на помощь ЭВМ, поставив

перед ней такую задачу: какими должны быть соотношение и

абсолютные концентрации а2, р2 и ^2 Для того, чтобы
рассчитываемые на ЭВМ по механизмам № 0 и 3 концентрации р2
отличались друг от друга больше чем на два доверительных
интервала. Если такого решения в разумных пределах значений

концентраций получить не удается, то задачу эту целесообразно
несколько переформулировать. Тогда требуется найти такие

начальные концентрации а2, Р2 и у2, при которых можно выбрать момент

времени, когда добавка к реагирующей смеси одного или

нескольких исходных веществ в определенной концентрации опять-таки
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приведет к указанному выше расхождению расчетных величин

для концентрации Р2. Определив условия такого эксперимента, его

необходимо осуществить на практике (в реальном случае) или на

ЭВМ (для модельной задачи), а затем провести проверку в этих

условиях выполнения общего контрольного требования 3. Здесь
предлагаемая нами методика выбора наиболее вероятного
механизма при помощи ЭВМ основывается не только на результатах

физико-химического эксперимента, но (в общем случае) и на его

планировании, которое также осуществляется при помощи ЭВМ.

Пользуясь приведенной выше формулой (91) можно

определить, что на первом этапе решения задачи (отбрасывание двух
из шести механизмов) мы получили информацию /х = 0,585 бит,
а на втором и окончательном этапе — информацию 12 = 2 бит.

Таким образом, суммарная информация при выборе одного из

шести возможных механизмов составила в нашем случае

/ = /х + /2 = 2,585 бит.

Заметим, что такое количество информации является

максимально возможным (Iog26 = 2,585) и получается благодаря тому,
что вероятность пяти механизмов оказалась равной нулю. Другой
набор экспериментов мог бы и не позволить провести столь

четкую дискриминацию механизмов. При этом информативность
такого эксперимента и суммарное значение / были бы меньше, чем

в нашем случае.

Фактически в этой главе рассмотрена одна основная задача
—

выбор наиболее вероятного из нескольких возможных

механизмов. Некоторые другие задачи, также рассмотренные нами в

предшествующем изложении, являются частными, не имеющими

самостоятельного теоретического значения, этапами решения
основной задачи. Мы попытались изложить тот математический

аппарат, который нашел применение для решения основной задачи
и ее отдельных этапов, выделив при этом метод оврагов Гельфан-
да — Цетлина. Мы полагаем, что последующее изложение (§ 3—
5) помогло читателю понять наше пристрастие к этому методу.

Излагая далее предлагаемые нами основные принципы выбора
наиболее вероятного механизма, мы считаем важной (и
отличающей их от ранее известных) особенностью наличие большого числа

контрольных критериев (требований). При этом показано, что

требование описания эксперимента типа ct
— ct (t) не является

достаточным для достижения цели. Была отмечена особая сила

общего контрольного требования 3 и решена одна модельная

(синтетическая) и одна практическая задача о механизме сложной

гетерогенной радиационно-химической реакции. На каждом этапе

решения этих задач физико-химики и математики работали
совместно. Такая организация исследования нам кажется важным

обстоятельством.
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Глава III

РЕШЕНИЕ ЗАДАЧ
ФИЗИЧЕСКОЙ И ХИМИЧЕСКОЙ КИНЕТИКИ

МЕТОДОМ МОНТЕ-КАРЛО

§ 1. Математические основы

применения метода Монте-Карло
к нелинейным кинетическим задачам

Для решения задач газодинамики больших скоростей,
химической физики и некоторых других задач необходимо знать

основные закономерности различных релаксационных процессов.
Такими процессами являются установление максвелловского

распределения, вращательная и колебательная релаксация,

диссоциация, ионизация и др. При этом, естественно, надо знать законы

элементарных актов, сформулировать и решить соответствующие
статистические задачи [1].

Аналитическое решение подобных задач в настоящее время

сопряжено с трудностями, которые можно условно разделить на

две группы. Трудности первой группы связаны с математической

формулировкой задач физической и химической кинетики.

Возникает вопрос о пригодности классического математического

аппарата для описания интересующих нас физических явлений.

Вторая группа трудностей связана с методами решения кинетических

уравнений. Все аналитические методы так или иначе связаны с

разложением искомых величин в ряд по малым параметрам. В

целом ряде случаев, представляющих большой теоретический и

практический интерес, отсутствуют возможности выделения таких

параметров. Однако более серьезным является, по-видимому,

вопрос об обоснованности самой теории возмущений. При
процедурах разложения в ряд часто не учитываются члены высших

порядков, что может привести к сильному искажению реальной
физической картины. Классическим примером может служить

развитие теории электромагнитных свойств высокотемпературной
плазмы: применение метода коррелятивных функций позволило

более последовательно учесть нелинейные эффекты, а это в свою

очередь привело к коренному пересмотру существовавших
представлений.

Бурный прогресс вычислительной техники привел к

возникновению ряда новых численных методов, одним из которых
является метод Монте-Карло (метод статистических испытаний).
Достаточно подробное описание областей применения и приемов,

используемых в этом методе, можно найти в работах [2—4].
Остановимся кратко на основных аспектах метода Монте-Карло и

вопросах его применимости к задачам физической и химической

кинетики.
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Метод Монте-Карло является по существу математическим

экспериментом. В ряде случаев он состоит в конструировании

искусственного случайного процесса таким образом, чтобы
среднее значение случайной переменной соответствовало решению

системы интегродифференциальных уравнений. Кроме того, он

может заключаться также в сведении исходного вероятностного

физического процесса к модели, допускающей практическую

реализацию на ЭВМ [2]. Нас будет интересовать вторая
разновидность метода, широко используемая, например, для решения
многочисленных задач о прохождении различных частиц через
вещество.

Типичная постановка задачи сводится к следующему [3].
В начальный момент времени считаются заданными

положение частицы в пространстве г0, ее энергия и направление

движения.

Плотность распределения времени свободного пробега
частицы в среде определяется выражением

p(t) =<зуехр(—ay*), (1)

где a — макроскопическое сечение взаимодействия частицы со

средой; v — скорость частицы *.

Розыгрыш случайной величины х, распределенной с плот-

со

ностью вероятности / (х) [ ^ / (я) Аи = 1 ] „ производится со-
—00

гласно следующей лемме, лежащей в основе метода Монте-Карло:

| = 5 f(x)dx, (2)
—00

где £ — случайное число, равномерно распределенное в

интервале (0,1).
Соотношение (2) позволяет каждому значению £ сопоставить

значение искомой величины х. В случаях, когда вид функции
/ (х) не допускает решения (2) относительно х в квадратурах,

применяются либо некоторые специальные приемы, либо простые
аппроксимации / (х).

Таким образом, для плотности распределения (1) получаем

I = ^ ov ехр (— out) dt = 1 — exp (— out) (3)
о

или

t=-lln(l-g). (4)

* Выражение (1) справедливо в случаях I <^ L, где I — средняя длина

свободного пробега, а Ь— характерный размер среды.
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После розыгрыша времени пробега частицы определяется ее

новое положение в пространстве

r = ro + vt. (5)

В точке v с частицей вследствие столкновения с атомом среды

может произойти несколько событий (упругое или неупругое

рассеяние, захват, ядерная реакция и др.). Каждому из этих событий

соответствует определенная вероятность; пусть число этих со-

s

бытии равно s с вероятностями Рг, Р2, ..., Р8(У\Рг= 1).Считает-
г=1

ся, что произошло событие /, если выполняется условие a^-v <!
3

%j, где dj = 2 Pi- После розыгрыша таким путем типа

взаимодействия частицы с атомом среды изменяется вектор ее

скорости (в случае рассеяния) или происходит ее гибель (в случае

поглощения). Траектория частицы прослеживается либо вплоть

до ее гибели, либо до момента, когда ее судьба перестает нас

интересовать. Осуществляя некоторое число статистически

независимых траекторий, можно получить пространственное,
временное, энергетическое и другие распределения плотности частиц.
Число таких траекторий определяется требованиями точности

результатов. Оказывается, что относительная погрешность
б — У X/N, где N — число испытаний.

Эта во многом идеализированная схема иллюстрирует

основные идеи метода Монте-Карло. Видно, что он занимает некоторое

промежуточное положение между аналитическими методами и

реальным экспериментом. Некоторыми его достоинствами являются

сравнительная простота, приспособленность для реализации на

ЭВМ и обилие получаемых результатов.

Однако важнейшим преимуществом метода Монте-Карло
перед аналитическими и другими численными методами является

возможность построения моделей, обходящих серьезные, часто

непреодолимые трудности, стоящие в ряде задач перед

аналитическими методами. Заметим, что метод Монте-Карло может
привести к успеху даже в ряде таких случаев, когда отсутствует

возможность формулировки соответствующих уравнений.

Рассмотрим теперь вопросы применения метода Монте-Карло
к задачам газовой кинетики. Кратко описанная выше схема,

применяющаяся для решения задач о прохождении частиц через

вещество, соответствует следующей физической модели. Система

разбивается на «среду» и ансамбль «пробных частиц», причем

среда описывается феноменологически через такие параметры,
как концентрации отдельных компонентов, температура и др.
Учитывается только взаимодействие пробных частиц со средой. Тем
самым пренебрегается взаимодействие пробных частиц между
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собой и изменением параметров, описывающих среду. Если

обратиться к задачам газовой кинетики, то можно сделать вывод, что

с помощью такого метода можно изучать системы, состоящие из

небольшой примеси молекул интересующего нас газа к

молекулам основного газа, являющегося «термостатом». Соотношение

концентраций примеси и термостата должно быть таково, чтобы

можно было учитывать только столкновения молекул примеси
и частиц термостата. Естественно, что в ряде случаев на такие

упрощения можно и нужно согласиться.

В работе [5], например, изучалось квазистационарное
распределение молекул по скоростям за фронтом ударной волны. При
этом для функции распределения задавалось некоторое нулевое

приближение, а затем при помощи метода Монте-Карло
рассчитывались приближения высших порядков (вплоть до второго).
Недостатком этого метода является необходимость достаточно

удачного выбора нулевого приближения (иначе процесс будет
расходиться). С другой стороны, при такой постановке

отсутствует возможность изучения кинетики перехода системы в

квазистационарное состояние. Поэтому принципиальным является

вопрос о построении нелинеаризованной модели. Такая

возможность в принципе имеется и состоит в привлечении идеи

«периодических граничных условий».

Метод периодических граничных условий был разработан
и применен для решения равновесных задач статистической

физики (в частности, теории жидкостей и плотных газов) [6—13].
Подробный обзор этих работ имеется в книге Фишера [14]. Здесь
же отметим, что в работе [6—10] метод Монте-Карло
использовался для вычисления на ЭВМ конфигурационных интегралов
системы частиц путем усреднения по множеству случайных
событий, образующих марковскую цепь с постоянными

вероятностями переходов (эти вероятности зависят только от

потенциальной энергии системы частиц). Возможности современных ЭВМ

вынуждают ограничиться рассмотрением систем с числом частиц

порядка 103. Для исключения влияния возникающих граничных

эффектов и был предложен метод периодических граничных
условий, заключающийся в разбиении пространства на

элементарные ячейки; в каждую такую ячейку помещали одинаковое число

частиц порядка сотни, и относительные конфигурации этих

частиц во всех ячейках считали одинаковыми. Этот метод позволяет

программировать задачу. В ряде работ [14—16] получены грубые
оценки его точности. Физически очевидно, что с помощью этого

метода можно с достаточной точностью учесть мелкомасштабные

флуктуации плотности (в пределах объема элементарной ячейки).
Статистический же вес неучитываемых крупномасштабных
флуктуации мал. Тем не менее вопрос строгого обоснования метода

периодических граничных условий остается открытым, хотя

результаты свидетельствуют о возможности его применения
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К цитированным уже работам [6—10] примыкают попытки

прямого интегрирования классических уравнений движения для

системы большого числа частиц в виде твердых шаров [11— 13].
В этих работах также применялся метод периодических

граничных условий, однако в отличие от работ [6—10], наряду с

координатами в машинной памяти хранились скорости всех частиц. Это

позволило изучить некоторые кинетические свойства жидкостей
и плотных газов. Несмотря на методический характер
упомянутых работ, были получены весьма важные результаты,

иллюстрирующие широкие возможности метода Монте-Карло. Например,
был обнаружен фазовый переход кристалл

— сверхплотный
газ [10], который не может быть с определенностью предсказан
ни одной из существующих теорий жидкости.

Однако область применимости методики, использованной

в работах [6—13], на наш взгляд, сильно ограничена. Дело в том,

что большинство расчетов проводилось на основе модели твердых

шаров. При переходе же к более реальным системам, например,
при рассмотрении системы молекул с потенциалом
взаимодействия Леннард — Джонса, появляются значительные трудности

при подсчетах вероятностей переходов между различными

конфигурациями системы [6—10] или вычислении траекторий частиц

[11—13]. Возможность решения нелинейных задач газовой
динамики связана, с нашей точки зрения, с объединением метода

Монте-Карло (точнее его разновидности, кратко описанной выше)
и метода периодических граничных условий. При этом, правда,

теряется возможность учета пространственных корреляций
частиц. Однако часто физический интерес представляет не решение
системы гидродинамических уравнений, а выяснение основных

особенностей кинетики процессов [1]. Для такого рода задач

можно отвлечься от пространственного рассмотрения и использовать

в качестве переменных только скорости частиц и координаты

внутренних степеней свободы. Ниже описаны некоторые

модификации метода Монте-Карло, предназначенные для решения

пространственно-однородных задач физической и химической

кинетики, и результаты численного решения для ряда случаев *.

Рассмотрим пространственно-однородную замкнутую систему,

состоящую из N частиц. Будем считать для простоты, что частицы

не имеют внутренних степеней свободы. Это предположение не

нарушает общности (вопрос об учете внутренних степеней свободы

частиц кратко рассмотрен в конце этого параграфа). При такой

постановке задачи состояние системы полностью описывается

набором скоростей всех частиц vx, v2, ..., Vn- При условии

замкнутости система может переходить из одного состояния в другое

* Все эти работы выполнены совместно лабораторией радиационной химии

ИНХС АН СССР и лабораторией вычислительных методов ВНИИЯГГ на

основе алгоритмов, разработанных во ВНИИЯГГ.
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только посредством упругих столкновений частиц. Поскольку
мы не рассматриваем конфигурационного пространства,
временное поведение системы не является детерминированным,
последовательность переходов системы из одного состояния в другое

является случайным процессом, а сами эти состояния образуют
марковскую цепь. Вероятности переходов между различными
состояниями не зависят от времени и полностью определяются

набором скоростей всех частиц. Чтобы получить возможность

описания макроскопических систем, нужно было бы положить N

равным примерно числу Авогадро. Ввиду ограниченных
возможностей современных ЭВМ воспользуемся несколько
модифицированным методом периодических граничных условий. При
описании системы набором скоростей всех частиц он сводится к

разбиению бесконечной системы частиц на N групп таким образом,
что скорости всех частиц в каждой группе близки по величине

и направлению друг к другу. В каждой группе выделяется
«типичная» частица и считается, что остальные частицы в группе
ведут себя аналогично этой частице. Таким образом, если п —

физическая концентрация частиц, величина n/N будет
соответствовать концентрации каждой из N «типичных» частиц. Отметим,
что частицы системы могут быть разного сорта

—

а, Р, ..., у,
но при этом должно обязательно выполняться соотношение

К определенной выше системе N частиц теперь можно

применить формальный аппарат метода Монте-Карло. Пусть of) —

полное сечение упругого рассеяния частиц i и / в системе центра
масс. Оно в общем случае зависит от \гг — Vj\ и определяется

конкретным видом потенциала взаимодействия между частицами.
В приближении твердых сфер

где di — диаметр i-й частицы.
В лабораторной системе координат сечение упругого

рассеяния i-й частицы на /-й будет иметь вид

g g-o,l
3 V

Теперь можно определить полное сечение взаимодействия г-й

частицы со всеми остальными

Очевидно, что величина ot соответствует некоторому

феноменологическому сечению взаимодействия i-й частицы со средой. Однако
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в такой модели система не подразделяется на «среду» и «ансамбль

пробных частиц». Каждую из N частиц можно рассматривать как

пробную, но их совокупность является в то же время и средой.
Выше уже говорилось, что система iV-частиц будет

находиться в состоянии {г^, v2, ..., Vn) вплоть до момента первого
столкновения. Следовательно, для построения марковского

случайного процесса, заключающегося в переходах системы через

последовательность состояний, нужно определить вероятности
этих переходов для каждого состояния к — Phm (т = 1, 2 )
или, что то же самое, вероятности столкновений различных пар

частиц £, /
= 1, ..., Лг. Необходимо также ввести временную

шкалу случайного процесса.

Вероятность того, что время свободного пробега z-й частицы
больше t, равна

P(tt>t) = exp (_ai|t4*)- (9)
Согласно формуле (9), можно в принципе разыграть времена tt

для всех i = 1, ..., N и выбрать минимальное из этих времен *.

Ясно, что £min является случайной величиной, закон

распределения которой будет получен ниже. Пусть Р (tm\n < /) —
вероятность того, что tmm меньше t. Тогда

Учитывая выражение (9), получаем для плотности распределения
минимальных времен

N N

a; (
г=1 г=1

В этом выражении все взаимодействия частиц учтены дважды,

поэтому выражение (8) надо заменить, например, на следующее

N

Ъ = ж S <4i- (8a)

Таким образом, согласно формуле (11), время можно

разыгрывать по формуле

. (12)

где £ — случайное число, равномерно распределенное в

интервале (0,1), а

N N N
(0)

Q = 2tal*il = -£-2 3^1^-^|. (13)
г=1 г=1 i=i-fl

* См. стр. ISO .
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Розыгрыш t по формуле (12) определяет время, через которое в

системе происходит первое столкновение *. Тем самым определяется

физическая временная шкала случайного процесса.
Из выражения (13) следует, что величина

п (0)

является вероятностью столкновения пары частиц (£, /) в заданном

состоянии системы {vx, v2, ..., Vn}- Набором этих вероятностей
i = 1, ..., N; j = 1, ..., N и вероятностей изменения скоростей
сталкивающихся частиц Р (viy Vj-^vl, v)) определяется набор
вероятностей перехода системы из данного состояния в другие,
отличающиеся скоростями двух частиц (г, /)•

Отметим, что в работе [17] монтекарловская схема, до

некоторой степени аналогичная описанной выше, применялась для

изучения релаксации пространственно-однородной системы

молекул к максвелловскому распределению. Однако «номера»
сталкивающихся молекул разыгрывались не по вероятностям типа

выражений (14), а равномерным образом. По этой причине схема,
описанная в работе [17], неприемлема для изучения временного
поведения системы.

Перейдем теперь к рассмотрению практической реализации

построенного случайного процесса на ЭВМ. Пусть в начальный

момент времени задано начальное состояние системы (т. е.

функция распределения частиц по скоростям). Нас будет интересовать
эволюция этого распределения во времени, поскольку знание

функции распределения в любой момент времени дает возможность

определения всех величин, представляющих физический интерес.
В основных чертах блок-схема реализации случайного процесса
перехода системы из одного состояния в другое сводится к

следующему.

1) Блок I присваивает всем частицам i = 1, ..., N начальные

скорости vt, согласно заданному начальному распределению.
Обычно таким распределением является распределение
Максвелла

/ (и) = Аи2 ехр (— rnv2 /2kT), (15)

где А — нормировочная константа; m — масса частиц; Т —

температура; к — постоянная Больцмана.
Существует точный способ розыгрыша скоростей максвеллов-

ского распределения частиц [18]. Согласно этому способу, ком-»

* Следует отметить, что при описанном видоизменении метода периодических

граничных условий учитываются не только мелкомасштабные флуктуации
плотности, как в работах [И, 12], но и крупномасштабные. Этот учет
происходит автоматически при розыгрыше времени, согласно формуле (12).
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поненты скорости v одной частицы равны

их = /—2а

vy - V—2o4nlxsin(2я£з)
i>2=- /—2з3 In £2 cosing,)

где а2 = кТ/т; £х, |2, ^3, £4 — случайные числа, равномерно

распределенные в интервале (ОД).
По формулам (16) разыгрываются скорости для частиц

разного сорта.

2) Блок II вычисляет начальные величины Pijy
определенные выражением (14), для всех пар (i, /) и величину Q, согласно

выражению (13). Блоки I и II задают начальное состояние системы,

вычисления в рамках этих блоков проводятся однократно.

3) В блоке III производится розыгрыш физического времени,
согласно формуле (12). Величина t заносится в специальный
счетчик 2j. После этого осуществляется розыгрыш номеров (i, j)
столкнувшихся частиц. Для этого последовательно вычисляются

суммы вида

где каждый номер к соответствует одной из пар частиц (г, /), а Р —

вероятности, определяемые, согласно формуле (14), и хранящиеся
в памяти машины. Считается, что при ат-г ^ £ <ат
сталкивается пара (i, /), соответствующая номеру т.

4) В блоке IV разыгрывается элементарный акт столкновения

частиц (i, /) с начальными скоростямиvt, Vj. При розыгрыше надо

учесть зависимость сечения от угла рассеяния. Если моделями
частиц служат твердые невзаимодействующие сферы, то в

системе центра масс рассеяние изотропно. В результате
столкновения частицам (г, /) присваиваются новые скорости vi, v].

5) В результате столкновения частиц (i, j) система перешла
в новое состояние. В соответствии с этим в блоке V вычисляются
новые величины Рш Pjk (к = 1, ..., N) и вносятся

соответствующие изменения в величину Q. На этом один шаг в марковской
цепи заканчивается, а управление передается блоку III.

Знание мгновенной функции распределения частиц по

скоростям позволяет вычислять средние значения энергии, скорости
в любой момент времени. Кроме того, при реализации случайного

процесса могут быть получены такие величины, как частота

столкновений и средняя передача энергии за столкновение. Выводя все

эти результаты на печать через определенный временной шаг,
можно получить детальное описание кинетики процесса.

Специального рассмотрения требует вопрос о точности

получаемых результатов и затратах машинного времени. Точность
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определяется числом рассматриваемых частиц N *. Если бы даже
и существовала возможность неограниченного увеличения числа

частиц, это вряд ли было бы целесообразным. Дело в том, что

точность результатов растет, как VN, а затраты машинного времени
в такой схеме — как N2. Поэтому в большинстве расчетов,
проведенных нами по описанному методу, система состояла из 108

частиц. Поскольку при таком значении N результаты оказывались

недостаточно точными (ошибка около +10%), реализовывалось
несколько статистически независимых цепей Маркова с

одинаковым начальным состоянием системы. Это достигалось путем
проведения серии аналогичных расчетов с разными начальными

случайными числами. Число цепей составляло от 20 до 60. При
этом ошибка усредненных результатов колебалась от +1 до +3%.

Аналогичный прием использовался ранее в ряде работ (см.,
например, [8, 10]). Очевидно, что реализация п цепей не

эквивалентна увеличению числа частиц в п раз, однако степень

неэквивалентности оценить трудно. Поэтому вопрос строгого
обоснования такой процедуры остается открытым. С целью практической
проверки нами были проведены расчеты для 108, 216 и 1000 частиц.
Во всех случаях расхождения между результатами не выходили

за пределы статистической ошибки, поэтому был сделан вывод
о нецелесообразности увеличения числа частиц. Было проведено
также численное интегрирование уравнений движения для системы

из 108 частиц по методу работ [11, 12].
Результаты этих расчетов практически совпали с

результатами расчетов по методу Монте-Карло, однако в последнем случае

затраты машинного времени были на порядок меньше, чем при
численном интегрировании.

Описанная выше схема решения задач газовой кинетики не

является, естественно, единственной. В тех случаях, когда

распределения частиц по отдельным компонентам скоростей не

представляют интереса и эти распределения можно считать сферически
симметричными в пространстве скоростей, удобно перейти от

компонентов к модулям скоростей, усреднив сечения взаимодействия

частиц по углам между направлениями их движения. В

результате такого усреднения вероятности принимают вид

Pij = Q
~

Естественно, что при розыгрыше самого столкновения надо в этом

случае учесть зависимость сечения от угла между начальными

* Строгую оценку статистической ошибки можно получить только после

проведения расчетов. Этот момент является характерным для метода Монте-

Карло [2].

188



скоростями и разыграть угол в соответствии с этой зависимостью.

Окончательное выражение, по которому производится розыгрыш
этого угла, имеет вид

cosp =
Hi^+

где £ — случайное число, равномерно распределенное в

интервале (0,1).
В связи с этим упрощением ниже будет рассмотрена другая

схема, вообще не использующая метод периодических граничных

условий. Такая возможность возникает при разбиении
непрерывного спектра модулей скоростей на дискретные эквидистантные

уровни v = nAv (n = 1, 2 ...). При этом задача сводится

фактически к решению системы уравнений баланса «чисел заполнения»

на каждом уровне. Такая модель обладает следующими
преимуществами перед моделью непрерывного пространства скоростей:

1) Нет неудобств, связанных с ограниченностью оперативной
памяти машины, можно хранить информацию практически о

произвольном числе частиц.

2) Ясность в отношении источников ошибок, связанных, во-

первых, с дискретностью пространства скоростей и, во-вторых,
с конечностью числа частиц; последняя ошибка носит чисто

статистический характер, а первая аналогична ошибке, возникающей
при численном интегрировании по методу прямоугольников.

3) Значительное сокращение затрат машинного времени,

розыгрыш одного столкновения в силу упрощения вычислений

убыстряется примерно в 10 раз для ~200 уровней и в 20 раз для
24 уровней; кроме того, затраты машинного времени для этой

модели просто пропорциональны числу частиц, и в связи с этим

отпадает необходимость в генерировании нескольких марковских

цепей.
Сама схема реализации случайного процесса изменяется

незначительно. Величина Й будет теперь иметь вид

к к к

а =
-ш {2 Ni 2 <*Д, - 2

4=1. j=l i—l
к

где Nt — число частиц на i-м уровне (2 N% — N); к — полное

г=1

число уровней, а

}, ,20,

Второй член в правой части уравнения (19) обусловлен тем, что

частицы сами с собой не сталкиваются. Очевидно, что в этой мо-
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дели все частицы, находящиеся на определенном скоростном

уровне, физически неразличимы. Поэтому в отличие от модели

непрерывного пространства скоростей для реализации
случайного процесса достаточно разыграть номера двух уровней, к

которым принадлежат столкнувшиеся частицы. Вероятность
столкновения частип, находящихся на уровнях (£, /), равна

'*** и-П.
<21>

Для практической проверки последней схемы нами была

проведена серия расчетов, в которой число уровней варьировалось
от 24 до 192. Кроме того, при фиксированном числе уровней (при
192) незначительно варьировалась величина Av — расстояние

между уровнями. Число частиц во всех случаях равнялось 2 • 104.
Все эти расчеты, так же как и расчеты, описанные на стр. 188,

выполнены для задачи о максвеллизации смеси двух газов с

разными начальными температурами *. Некоторые результаты
расчетов приведены на рис. 46 и 47. Видно, что результаты для

разного числа уровней и разных Ду мало отличаются друг от друга.
Слабая чувствительность к числу уровней является весьма

важным результатом^ так как возникает возможность резкого
сокращения затрат машинного времени. Сходная ситуация имеет место

в многогрупповом приближении теории переноса нейтронов [19],
где уже при нескольких скоростных группах точность

результатов вполне удовлетворительна.
Из рис. 46 и 47 следует, что результаты расчетов для случаев

дискретной и непрерывной моделей пространства скоростей также

вполне удовлетворительно совпадают друг с другом. Этот факт
служит косвенным подтверждением правильности обеих схем,

поскольку они основаны на разных принципах. Еще одним
практическим подтверждением пригодности метода является

совпадение в пределах статистической ошибки расчетной частоты

столкновений с теоретическим значением этой величины.

Учет в рамках обеих рассмотренных модификаций метода

Монте-Карло различных неупругих процессов и внутренних
степеней свободы в принципе не вызывает затруднений. Необходимо,
естественно, чтобы были заданы сечения этих процессов, причем

безразлично, в какой форме — аналитически или численно. Учет

химических реакций достигается наиболее простым образом:
наряду с сечением упругого рассеяния нужно включить в

выражения для вероятностей переходов Ptj сечения химических реак-

* Эта задача подробно рассматривается в следующем параграфе.
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Рис. 46. Зависимость от времени средней энергии молекул
метана при начальных температурах метана 3-Ю2 и аргона 104 °К

Л — модель непрерывного пространства скоростей; • — 192 уровня,

Av = 4-Ю3 см/сек; О — 192 уровня, Дг> = 4,035 • 103 см/сск; ~\ 24 уровня,

Дг? = 3.2 • 10* см/сек

К W5см/сек

Рис. 47. Относительное распределение молекул метана по

скоростям при t ж 0,75 • 10~9 сек

Обозначения те же, что и на рис. 46



ций. Для изучения же колебательной, вращательной релаксации,
ионизации и т. п. следует наряду со скоростями частиц хранить
в машинной памяти числа заполнения координат внутренних
степеней свободы.

Основным достоинством рассмотренных моделей является

точный учет всех интегралов столкновений. Это наиболее важное

обстоятельство должно позволить решить нелинейные задачи
газовой динамики.

Комбинируя эти нелинейные схемы с обычным вариантом
метода Монте-Карло, можно получать решения различных задач

физической и химической кинетики. Такой подход может

позволить установить границы применимости основных

предположений, лежащих в основе аналитических методов.

При наличии достоверных данных по сечениям процессов

результаты, получаемые с помощью метода Монте-Карло, вполне

могут претендовать на сравнение с экспериментом, а в ряде
случаев и заменять его. Однако даже при отсутствии таких анных

есть возможность получения целого ряда важных качественных

результатов на основе простых физических моделей.
В силу особенностей метода Монте-Карло его применение

должно оказаться наиболее интересным в ситуациях, когда
аналитические и традиционные численные методы не имеют успеха.

§ 2. Максвеллизация смеси двух газов

с разными начальными температурами

Все разработанные нами модификации метода Монте-Карло
были опробованы на пркмере расчета процесса максвеллизаиии

смеси двух газов с разными начальными температурами,

поскольку эта задача является наиболее простой и вместе с тем

типичной для широкого класса задач газовой кинетики. Путем
оценки «физичности» модели, точности получаемых результатов
и затрат машинного времени выяснялась эффективность той или

иной расчетной схемы при решении задач подобного рода.

Поэтому в значительной степени результаты решения носили

методический характер.
Вместе с тем расчет максвеллизации смеси двух газов имеет

большой теоретический и практический интерес. На его примере
отчетливо видны основные трудности, с которыми сталкиваются

традиционные аналитические методы. Все эти методы так или иначе

используют разложение искомых величин и функций
распределений в ряды по малым параметрам. Эта процедура не обоснована

математически. Возникает вопрос и о справедливости физических
представлений, лежащих в основе вывода уравнений
аналитической теории. Следует подчеркнуть, что в методе Монте-Карло не

используются предположения, на которых основан вывод
уравнения Больцмана.
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Решение задачи о релаксации по поступательным степеням

свободы представляет большой интерес и с точки зрения других

релаксационных процессов (колебательной релаксации,
химической кинетики и т. д.). Общепринятым является мнение, что в силу

малости времени свободного пробега по сравнению с

характерными временами неупругих процессов эти процессы можно

рассматривать отдельно от процесса максвеллизации (см.,
например, [1]).

Если такой подход можно считать в какой-то мере
справедливым при низких температурах, то при высоких температурах

(выше 104° К) возникают большие сомнения в его применимости,

так как характерные времена неупругих процессов становятся

сравнимыми со временем свободного пробега.
Открытым остается также вопрос об обоснованности

процедуры усреднения сечений неупругих процессов по равновесной
функции распределения Максвелла. Ведь даже небольшие

отклонения от равновесия могут привести при определенных
условиях к большим ошибкам в определении, например, констант

скоростей химических реакций.
По этим причинам решение задачи о релаксации по

поступательным степеням свободы молекул следует рассматривать как

важный промежуточный этап решения других задач газовой

кинетики.

Все результаты, описанные в этом параграфе, получены для

модели дискретного пространства скоростей (см. стр. 189),
поскольку они характеризуются наименьшей статистической ошибкой.

Была рассмотрена система, состоящая из смеси молекул метана

и атомов аргона с начальными температурами соответственно

3-102 и 104 °К. Система считалась пространственно-однородной,
а молекулы аппроксимировались твердыми невзаимодействующими
сферами. Концентрации молекул метана и аргона были взяты

одинаковыми *
и равными 0,5- 1O1S см'3. Общее число частиц во всех

вариантах составляло 4«104 (при этом статистическая ошибка не

превышала +1%). В начальный момент времени скорости

молекул разыгрывались случайным образом по закону Максвелла для

соответствующей температуры.
В результате расчетов получены функции распределения

молекул метана и аргона по скоростям. Кроме них были рассчитаны
средние значения энергии и скорости обеих групп молекул,
частоты отдельных типов столкновений и средние передачи энергии

за одно столкновение. Наконец, была рассчитана Н-функция
системы, являющаяся аналогом энтропии для неравновесных
систем.

* Величина физического времени обратно пропорциональна общей
концентрации, поэтому результаты расчетов можно привести к виду, не

зависящему от концентрации.
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Рис. 48. Зависимость средней
энергии молекул метана от

времени для начальных температур
метана и аргона соответственно

I — 3 • 102 и 104 °К; 2 — 2,3 • 103

и 8 • 10зоК

Расчет производился по формуле

Рис. 49.' Зависимость средних
скоростей молекул метана (1)
и аргона (2) от времени

Начальная температура метана 3 • 102

и аргона 104ОК

(22)

где суммирование производится по отдельным компонентам смеси,
а под / (г;) понимается функция распределения по модулям
скоростей (именно эта функция рассчитывается в процессе решения).
В процессе расчетов изучалась зависимость всех величин от

времени. Расчет проводился вплоть до установления в системе

полного равновесия.
На рис. 48 показана зависимость средней энергии молекул

метана от времени. В целом, это достаточно гладкая кривая, однако
в области t ^ 3,5 хг вторая производная средней энергии по

времени меняет знак. Физически такой результат показывает, что

процесс максвеллизации нельзя описать одним временем релаксации.
На рис. 49 показана зависимость средних скоростей молекул

метана и аргона от времени. Аналогичные зависимости для частот
столкновений (zr) и средних передач энергии за столкновение

для столкновений трех типов приведены на рис. 50 и 51.
Основной интерес представляют функции распределения

молекул метана по скоростям. Эти функции
*
показаны на рис. 52,

*

Строго говоря, здесь и далее рассчитывались не сами функции
распределения / (и), а величины

Nv/N (v),
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Рис. 50. Зависимость относитель-
ных частот столкновений (zr)
между молекулами разного сорта
(1), молекулами метана (2) и

молекулами аргона (3) от времени

Рис. 51. Зависимость средней до-
ли передаваемой энергии при од-
ном столкновении от времени

Обозначения те же, что и на рис. 50

6

v, Ю5см/сек

6

к Ю5см/сек

Рис. 52. Кривые распределения Рис. 53. Кривые распределения
молекул метана по скоростям в молекул метана по скоростям в

разные моменты времени разные моменты времени

— *« 1,1 тг; 2 —t » 2,9 тг 1 — *» 4,6 тг; 2 — 8,7 тг

53 в разные моменты времени. Видно, что уже после одного

столкновения на частицу появляется интенсивное

высокоэнергетическое крыло (кривая 1, рис. 52). К моменту времени t ж 3,5 хг

(где тг — среднее время одного столкновения на частицу при рав-

где интервал А г; — малая, но конечная постоянная величина, а
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новесии) в широкой области скоростей устанавливается почти

равномерное распределение, а к моменту t ~ 4тг (кривая 1, рис. 53)
функция распределения молекул метана по скоростям принимает
в основном максвелловскую форму. Путем совместного

рассмотрения всех этих кривых можно установить следующие основные

закономерности процесса максвеллизации.

Наиболее быстро этот процесс протекает в начальные моменты

времени (вплоть до ^ ^ 3 тг). Важной особенностью этого этапа

является сильная неравновесность функций распределения по

скоростям. Приобретенная молекулами метана энергия не

успевает перераспределиться между высокоэнергетическим крылом

и остальной частью функции распределения. Иными словами,

процесс установления максвелловского распределения внутри обоих

газов протекает с меньшей скоростью, чем процесс передачи

энергии молекулам метана от молекул аргона. Такая явно

выраженная неадиабатичность присуща процессу максвеллизации вплоть

до момента t ^ Зтг
В дальнейшем процесс максвеллизации внутри каждого газа

начинает заметно конкурировать с процессом теплообмена между
этими газами. Кроме того, часть энергии молекул метана,

образующих высокоэнергетическое крыло функции распределения,

возвращается молекулам аргона
— возникает заметный

встречный перенос энергии от метана к аргону. Указанием на этот

эффект служит заметная стабилизация высокоэнергетического

крыла функции распределения молекул метана, начиная с £^3тг,
величина этой функции в области больших скоростей меняется

незначительно по сравнению с первыми моментами времени. С этой

точки зрения становится понятным эффект изменения знака

второй производной средней энергии молекул метана по времени,
а также различное поведение средних скоростей молекул метана

и аргона в момент £^3,5тг: гладкость кривой средней скорости
молекул метана объясняется тем, что и рост их средней энергии
и максвеллизация их функции распределения приводят к росту

средней скорости. В случае же аргона эти два процесса ведут
к разному результату, поэтому процесс уменьшения средней

скорости молекул аргона замедляется (см. рис. 49).
После t ^ 3,5 хг процессы максвеллизации внутри каждого

газа и процесс передачи энергии от молекул аргона молекулам
метана приходят в динамическое равновесие друг с другом, а

функции распределения по скоростям приобретают
максвелловскую форму. В состояние полного равновесия система приходит

к моменту времени t ^ 12 т,..
Значительный интерес представляет также изучение

поведения Л-функции системы, поскольку эта величина является

некоторой интегральной характеристикой функций распределения
обоих газов. Зависимость /^-функции от времени для разных
начальных условий представлена на рис, 54. Разность между
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ЛИ ЛН-

Рис. 54. Зависимость функции Я
от времени для начальных

температур метана и аргона

соответственно

1—3-Ю2 и 104 °К; 2—2,3-Ю3 и 8 • 10зоК;
3—3,3* 108и7» 108ОоК

Рис. 55. Параметрическая
зависимость величин (АН — Д#г) от

средней энергии молекул метана

для начальных температур метана

и аргона соответственно

1—3-Ю2 и104ОК; 2—2,3.10s и 8-108ОК;

3—3,3' 103и7- 10зоК

мгновенным и равновесным значениями Н может служить мерой

неравновесности системы. Если по оси абсцисс на рис. 54 вместо

времени отложить значение средней энергии молекул метана,
то получится следующий результат: в зависимости от начальных

условий (разных температур молекул метана и аргона) одним и

тем же значениям средней энергии молекул метана отвечают

разные значения .//-функции. Назовем адиабатическим такой процесс,

при котором в любой момент времени функции распределения

молекул отдельных компонентов по скоростям являются максвел-

ловскими, иными словами, в любой момент времени для каждого

компонента понятие температуры имеет смысл. Например, близким
к адиабатическому должен быть процесс максвеллизации

в двухкомпонентной системе с сильно различающимися массами

частиц. В такой системе средняя передача энергии при
столкновениях разных частиц будет много меньше аналогичной

величины при столкновениях одинаковых частиц. Поэтому в любой
момент времени функции распределения обоих компонентов должны
быть очень близкими к распределению Максвелла.

Нетрудно видеть, что для определенного таким путем
адиабатического процесса должно выполняться соотношение

= ТЫ (т 1т v » (23)

где Д Нг — разность между значением Я, соответствующим
различным температурам Га и Т$, и равновесным значением (7V —"

) Т<ц Тр — температуры ртдэдьщдх компрнентр^,
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Из кривых на рис. 54 можно формальным путем вычислить

аналогичные разности АН, только теперь мгновенные значения Н

будут соответствовать средним энергиям молекул 2?а и Ё$.
Разность величин АН и АНГ может служить критерием неадиаба-
тичности процесса.

На рис. 55 показаны зависимости величин (АН — АНГ) от

средней энергии молекул метана (для трех различных начальных

условий). Видно, что все кривые проходят через максимум.
Такой результат непосредственно следует и из Я-теоремы Больц-
мана, которая в принятых обозначениях принимает форму АН 1>
> АНГ. Интересно, что изменение наклона кривой зависимости

(АН — АНГ) от средней энергии молекул метана для начальной

температуры метана 3-102 °К согласуется по времени с изменением

знака второй производной кривой 1 на рис. 48.
Часто удобной приближенной характеристикой кинетики

процесса служит так называемое характерное время релаксации

т. Обычно это время определяется из простейшего
релаксационного уравнения

где х (t) — мгновенное значение релаксирующей величины;

х (0) — ее начальное значение; xs
—

равновесное значение.

Однако в большинстве случаев неясно, что понимать под

характерным временем релаксации всей системы. Действительно,
можно ожидать, что релаксация различных величин,

характеризующих одну и ту же систему, будет, строго говоря, происходить
с разными значениями т.

При использовании соотношения (24) нами были оценены

характерные времена релаксации отдельных участков функции
распределения молекул метана по скоростям, средней энергии,
средней скорости молекул метана и /^-функции всей системы.

Оказалось, что только изменение величины Н описывается достаточно

точно соотношением (24) во всем интервале времени.
Все остальные перечисленные величины релаксируют по

закону, близкому к экспоненциальному, только вплоть до момента

t ^^ O,D Ту

Распределение характерных времен релаксации отдельных

участков функции распределения молекул метана по скоростям

показано на рис. 56. Видно, что эти времена довольно сильно
зависят от скорости. Пунктирный участок кривой соответствует
области скоростей вблизи значения #^l,3«105 см/сек, при

котором относительная заселенность молекул метана одинакова для
начального и конечного состояний системы. Ясно, что время
релаксации этого участка функции распределения должно
стремиться к нулю. Из рис. 56 следует также, что наиболее быстро релак-
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сируют крылья функции распределения. В целом форма кривой
напоминает равновесное максвелловское распределение молекул

метана, причем максимум кривой примерно соответствует

среднеквадратичному значению скорости молекул метана в равновесии.
Физически такой результат вполне соответствует поведению

функции распределения молекул метана по скоростям в начальные

моменты времени (см. рис. 52) и означает, что система в начальные

времена не обладает информацией о своем будущем равновесном
состоянии. Следует оговорить, что результаты, представленные

Рис. 56. Кривая зависимости

характерных времен релаксации

отдельных участков функции
распределения молекул метана от

скорости

на рис. 56, носят полуколичественный характер, так как

характерные времена определялись по формуле (24) приближенно.
fe^ Аналогично были определены следующие характерные
времена: т^ х 2,4 тг; т- ^ 2,5 тг; тя

= 2,1 тг*. Если же говорить об

общем времени релаксации системы, то этой величине,

по-видимому, лучше всего соответствует Тя, поскольку .ff-функция
наиболее полно описывает состояние системы.

Таким образом, основные результаты расчетов сводятся к

следующему. Процесс максвеллизации системы двух газов со

значительным перепадом начальных температур протекает

неравномерно.
Начальный неадиабатический этап характеризуется тем, что

процесс передачи энергии от молекул горячего молекулам

холодного газа значительно опережает процесс собственно

максвеллизации внутри каждого газа. На втором почти адиабатическом
этапе в первом приближении устанавливается динамическое
равновесие между скоростями этих двух процессов **.

* Напомним, что все эти величины, за исключением тн, так же как и

распределение, показанное на рис. 56, имеют смысл только для начальных

моментов времени вплоть до t zz 3,5 тг.
** Участниками семинара по газовой динамике в ЛГУ им. Жданова было

высказано предположение, что наличие двух этапов максвеллизации
объясняется набором двух независимых сечений. Нами были проведены
специальные расчеты для системы, состоящей в начальный момент из двух групп

молекул аргона с разными температурами [20]. Качественно результаты этих
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На начальном участке даже в первом приближении понятие

температуры не имеет смысла ни для системы в целом, ни для

отдельных компонентов, так как функции распределения молекул
по скоростям существенно отличаются от максвелловских.

Образование в первые же моменты времени высокоэнергетического

крыла функции распределения молекул холодного газа по

скоростям должно оказать существенное влияние на кинетику других

процессов, например химических реакций. Резкая

неравновесность функций распределения в начальные моменты времени
служит указанием неприменимости процедуры разложения этих

функций в ряды, как это делается в большинстве аналитических

методов.

§ 3. Максвеллизация двух встречных потоков газа

Изучение релаксационных процессов, протекающих в

неравновесных газовых системах, представляет интерес с точки

зрения физической кинетики и кинетики химических реакций.
Одним из основных процессов является процесс установления
равновесия по поступательным степеням свободы (максвеллизация)
молекул газа.

В настоящем параграфе рассматривается кинетика максвел-

лизации в системе незаряженных частиц, принадлежащих двум

встречным потокам. Иначе говоря, начальное состояние системы

задается двумя б-образными функциями распределения. Расчет

максвеллизации в системе с указанным типом неравновесности

представляет самостоятельный интерес. Физическим примером
такого рода задач может служить процесс установления

равновесия по поступательным степеням свободы молекул, протекающий
за фронтом ударной волны. Кроме того, максвеллизация может

влиять на характер химических реакций в низкотемпературной
плазме. При температурах порядка 104° К скорость некоторых
химических реакций может полностью определяться скоростью
появления молекул с энергией, превышающей некоторое
пороговое значение. Существенным является также то

обстоятельство, что в плазмохимических реакциях реагенты приводятся
в контакт при смешении потоков. К сожалению,
пространственное рассмотрение максвеллизации в газовых системах в настоящее

время провести не удается. Это, естественно, ограничивает область

применимости результатов расчетов. Однако можно проследить
основные кинетические закономерности релаксационного процесса,
а в некоторых случаях получить практические рекомендации.

Рассматривалась пространственно-однородная модель замк-

расчетов полностью совпадают с результатами, изложенными в этом

параграфе. Следовательно, сделанные здесь выводы не объясняются таким

формальным путем.
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нутой системы из 108 частиц, принадлежащих двум встречным
потокам. Каждый поток из 54 частиц однороден по составу.
Отношение масс частиц из разных потоков, М/т ^ 2000.

Начальная кинетическая энергия направленного движения каждой
частицы соответствовала температуре 3.104°К. Тепловое движение
в начальный момент времени не учитывалось. Плотность частиц
в системе составляла 1013 см"3. Столкновения частиц
предполагались абсолютно упругими, а сами частицы

—

твердыми

невзаимодействующими шарами. Выбор начальных условий в достаточной
степени произволен и допускает в рамках выбранной модели
любые вариации отношения масс и начальной энергии частиц, угла

между потоками, вида начальных функций распределения частиц
по скоростям. Однако для встречных потоков сильно

различающихся по массам частиц можно особенно ясно проследить
основные закономерности процесса максвеллизации.

Схема расчета основана на алгоритме решения задачи о

максвеллизации для модели с непрерывным пространством скоростей
(см. стр. 184). Координаты частиц в схему расчета включены не

были. Фактически в пространстве скоростей исследовался процесс

диффузии при рассеянии быстрых легких частиц массы т на

медленных тяжелых М. Известно, что такой процесс протекает в три
этапа [21]. Поскольку концентрации и начальные энергии легких

и тяжелых частиц одинаковы, то последовательность этапов до

установления в системе термодинамического равновесия

следующая. Сначала устанавливается квазиравновесное распределение
в группе легких частиц, затем среди тяжелых частиц. И, наконец,

начинается процесс выравнивания температур обоих

распределений, приводящий в пределе к установлению единого максвеллов-

ского распределения для всей системы. Соотношение времен этих

процессов определяется величиной М/т.
В данной работе решение прерывалось при установлении

квазиравновесного распределения внутри группы легких частиц.

Практическое решение задачи сводится к реализации на ЭВМ

марковской цепи с отличными от нуля вероятностями переходов
системы из одного состояния в другое. Результаты расчета одной

цепи носят вероятностный характер и зависят от выбора
начального псевдослучайного числа. Для повышения точности каждый
вариант (цепь) повторялся статистически независимо 60 раз с

последующим усреднением результатов в определенные моменты

времени. Практически этот прием эквивалентен увеличению
эффективного числа частиц и позволяет повысить точность расчетов без

значительного увеличения времени счета на ЭВМ. Достигнутая
в результате точность расчетов характеризуется статистической

ошибкой ^1+2%. Ввиду этого все аномалии в функциях
распределения и в их поведении во времени, выходящие за пределы
указанной ошибки, естественно, трактуются нами как выражающие

физическое поведение системы.
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Прежде чем переходить к результатам, введем несколько

обозначений. Компоненту скорости v\\ = vz будем называть

продольной, a vj_
= у vx + i>l — поперечной. Рассмотрение ведется

в лабораторной системе координат. В начальный момент времени

все частицы обладают только продольными компонентами

скорости. Кроме того, условно введем продольную Гц = mv\ и

поперечную Т± = -т v\ компоненты температуры.

Рис. 57. Изменение отношения

разности продольной и

поперечной компонент температуры к

начальной энергии частиц Ео со

временем

Величина разности компонент температуры Гц — Т± может

служить мерой отклонения системы от равновесия. В равновесной
системе эта разность должна быть близка к нулю. Расчетная
зависимость от времени Г^ и Гц для легких частиц представлена на

рис. 57. Кривая пересекает ось абсцисс в момент 3,5-10~9 сек

(—4,2 столкновения на одну частицу) и дальше слабо колеблется
около нулевого значения, что указывает на относительную

устойчивость равновесия в группе легких частиц. Полученное из

решения квазиравновесное значение средней поперечной компоненты

энергии легкой частицы Е±т примерно на 4—5% больше

соответствующей компоненты термодинамически равновесной энергии

2?т.р.. Изменение во времени отношения этих компонент показано

на рис. 58.

На рис. 59 представлено изменение во времени отношения

средней полной энергии легких частиц Rm к ее равновесному
значению (ET.V). Увеличение средней энергии легких частиц в

начальные моменты времени объясняется преобладанием
столкновений между легкими и тяжелыми частицами. Это приводит к

передаче энергии от тяжелых частиц к легким, поскольку начальные

импульсы тяжелых частиц значительно больше импульсов легких

частиц. Рост энергии легких частиц прекращается к моменту

времени — 4-10"9 сек ( — 5,0 столкновений на частицу), в

последующие моменты начинается постепенное уменьшение Ет. К моменту
установления полного равновесия в системе средние энергии

легких и тяжелых частиц должны быть одинаковыми. Отметим, что

аналогичная ситуация возникает в задачах о взаимодействии пучка
заряженных частиц с плазмой [21]. Обмен энергией между пучком

202



и плазмой прекращается в

общем случае не при

равенстве температур обоих

компонентов. Естественно, что

такое равновесие не является

полным. Средняя поперечная
компонента энергии тяжелых

частиц Еj_Af (рис. 60)
монотонно увеличивается с ростом

времени, и к моменту
установления равновесия внутри
группы легких частиц она
составляет доли процента от

равновесного значения
энергии 2?г.р.-

Основной интерес в

результатах расчетов
представляет поведение функций
распределения компонентов
смеси во времени. По-видимому,
именно аномалии в

поведении функций распределения
(в смысле отклонения от

равновесных) и особенно
высоко энергетической части ее

ответственны за скорости

химических реакций в

низкотемпературной плазме. На

рис. 61—63 представлены
параметрические семейства

кривых функций
распределения легких частиц. На рис.61
приведены функции
распределения легких частиц по

модулям скоростей.
Параметром служит временной шаг

дг = 0,476.10 ~9
сек. Всего

было получено 15 кривых,
относящихся к разным
моментам времени. Из них на

рис. 61 представлены лишь

характерные, поясняющие

общую тенденцию в

изменении поведения кривых
функций распределения. В

начальные моменты времени (до
3,5—4,0.10~9 сек) функции

Рис. 58. Изменение во времени
средней поперечной компоненты

энергии легких частиц,

отнесенной к термодинамически

равновесному значению энергии.

Ю'8сек

Рис. 51). Изменение во времени

полной энергии легких частиц

Рис. 60. Изменение во времени

средней поперечной компоненты

энергии тяжелых частиц,

отнесенной к термодинамически

равновесному значению.
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\vm\$W5CMlcen
Рис. 61. Кривые распределения числа легких частиц по

модулям скоростей в разные моменты времени

1 — t = 2At; 2 — t — 4Д*; 3 — t = QAt (At = 0,476 • 10~9 сек); 4 —

равновесное распределение, полученное усреднением кривых за 4 • 10~* сек,

начиная с момента t = 7At.

Вертикальные черточки на рис. 61—63— среднеквадратичное отклонение

от равновесного распределения

Ю5см/сен

Рис. 62. Кривые распределения легких частиц по продольным
компонентам скоростей

1 — t = At; 2 — t = ЗА*; 3 — t = 4А/; 4 — t = 6А/; 5 — равновесное

распределение



Рис. 63. Кривые распределения числа легких частиц по

поперечным компонентам скоростей

1 — t = At; 2 — t = ЗА*; 3 — t = ЪМ; 4 — t = 6Af; 5 — равновесное

распределение

имеют абсолютный максимум в точке v0
= 4,27.105 см/сек

(начальная скорость). При приближении к равновесию величина этого пика

на кривых уменьшается. Одновременно увеличивается дисперсия

функций распределения. Начиная с 4.10"9 сек (— 5,0 столкновений
на одну частицу) наблюдаются колебания около равновесной
функции распределения. Существенно, что эти отклонения заведомо

не укладываются в статистическую ошибку расчетов. В каждый

фиксированный момент времени функции распределения
значительно отличаются от равновесной, однако среднее по

совокупности функций за время 4«10~9 сек (~ 5,0 столкновений на одну

частицу) представляет собой максвелловскую функцию
распределения (кривая 4, рис. 61). Вертикальными черточками отмечены

среднеквадратичные отклонения мгновенных функций от

равновесной. Время жизни отдельных флуктуационных максимумов
и минимумов функций не превышает 0,5—1,0.10~9 сек (0,55—
1,10 столкновений на частицу). Аналогичное поведение

наблюдается и у функций распределения легких частиц по продольным

(см. рис. 62) и поперечным (см. рис. 63) компонентам скоростей.
Особенностью кривых рис. 63 является наличие относительных

максимумов функций распределения в точке v±= г70. — 4,27 X

X Ю5 см/сек. Это объясняется тем, что при упругом соударении

вероятность рассеяния частиц в элемент телесного угла
определяется выражением dyd (cos9). Следовательно, вероятность
рассеяния на угол 0 в плоскости рассеяния определяется величиной

sin 0 и максимальна поэтому для угла я/2. Это приводит при стол-
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кновениях в начальные моменты времени к повороту вектора

скорости легкой частицы на я/2. Можно отметить также быстрое
формирование высокоэнергетической части функций
распределения.

Подведем некоторые итоги. Рассмотрена кинетика процесса
релаксации системы частиц с начальными направленными
скоростями к квазиравновесному распределению в группе легких

частиц. Равновесие имеет относительно устойчивый характер, при
этом средняя энергия легких частиц выше энергии тяжелых.

Этот результат совпадает с выводами аналитической теории и

доказывает возможность применения периодических граничных
условий, несмотря на отсутствие строгого математического
обоснования. Показано, что мгновенные функции распределения частиц
по скоростям при достижении равновесия по энергии (Гц — Т±^^
^ 0) значительно отличаются от максвелловских. Равновесной

является среднее по времени от совокупности функций
распределения при усреднении за промежуток времени порядка 4«10~9 сек.

Квазиравновесное состояние в группе легких частиц достигается

за время 5—10.10~9 сек, В заключение следует упомянуть, что

скорости релаксационных процессов линейно зависят от плотности

частиц в системе. Поэтому результаты расчетов можно обобщать
на аналогичные системы с другими плотностями.

§ 4. Кинетика высокотемпературного
разложения молекул
(на примерах разложения метана и тетрахлорсилана)

Для изучения кинетики химических газовых реакций обычно
применяется теория равновесного комплекса. Эта теория
оперирует с системой формальных уравнений химической кинетики,
в которых неизвестными величинами являются концентрации

химически-активных веществ, а коэффициентами — константы

скоростей химических реакций. Считается, что зависимость констант

скоростей от температуры описывается выражением Аррениуса

к (Т) = /соехр (- EJRT), (25)

где кь — предэкспоненциальный множитель, не зависящий от

температуры.
Таким образом, в основе этой феноменологической теории

лежат следующие основные допущения. В любой момент времени
системе в целом можно приписать температуру. Это означает, что,

во-первых, температура одинакова для всех компонентов, и, во-

вторых, отклонения от равновесной функции распределения
пренебрежимо малы. Отсюда следует, что накладываются
ограничения на скорости химических реакций — они должны быть до-
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статочно малыми, чтобы химические реакции не нарушали

равновесного распределения молекул.

Заранее можно ожидать, что при высоких температурах

(выше — 5000° К) все эти предположения теории равновесного
комплекса выполняться не будут. Если в начальный момент времени
в исходной газовой смеси имеется значительный перепад

температур (наиболее реальный случай), то по крайней мере в первые
моменты времени после начала релаксационного процесса

систему заведомо нельзя описывать таким параметром, как

температура. Более того, при высоких скоростях химических реакций
можно ожидать, что и в некотором стационарном режиме не будет
выполняться даже условие локального термического равновесия.

Строгое решение задач о протекании химических реакций при
высоких температурах может быть получено только путем
последовательного применения кинетической теории. При этом

необходимо ввести понятие функции распределения молекул каждого
компонента системы по скоростям, а вместо констант скоростей
использовать сечения различных неупругих процессов,

зависящие от относительных скоростей сталкивающихся частиц и

координат их внутренних степеней свободы.
В то же время аналитическое решение задач химической

кинетики при рассмотрении ее совместно с другими
релаксационными процессами (максвеллизация, колебательная релаксация
и т. д.) в настоящее время невозможно [1]. Поэтому большой
интерес представляет разработка численных методов, пригодных

для решения широкого класса таких задач.

На стр. 192 настоящей книги изложены результаты расчетов

на ЭВМ для задачи о максвеллизации бинарной смеси метана и

аргона с разными начальными температурами (соответственно 3-
•102 и 104 °К). Напомним, что основные выводы из этих

результатов сводятся к следующему: процесс релаксации по

поступательным степеням свободы протекает в два этапа. На первом,
неадиабатическом этапе функции распределения молекул обоих газов

существенно отличаются от максвелловских, причем

высокоэнергетическое крыло функции распределения метана

образуется практически мгновенно. Наличие этого крыла должно оказать

существенное влияние на кинетику других релаксационных
процессов (в частности, химических реакций) особенно в начальные

моменты времени. В данном параграфе будут приведены
результаты серии расчетов, проведенных с целью проверки этого

положения.

Изучалась кинетика термического разложения молекул

метана и тетрахлорсилана в атмосфере горячего аргона. Поскольку
в настоящее время нет достоверных данных по сечениям неупругих
процессов, была принята следующая простая модель:

1) молекулы газов являются твердыми
невзаимодействующими шарами;
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2) реакции протекают по схемам

СН4 -> СН3 + Н, (А)
SiCl4-^SiCl3 + С1; (В);

3) сечение реакций равно нулю при Ek <1Еа и постоянно

при Ек > Еа, где Eh — кинетическая энергия молекул, а Еа —

энергия активации реакций (А) и (В).
Кроме того, было сделано предположение, что время жизни

молекул в состоянии с Ек > Еа не зависит от Z?fe и распределено
по экспоненциальному закону с плотностью вероятности

±-t/T), (26)

где т — среднее время жизни.

Естественно, что это предположение нуждается в

дополнительном независимом обосновании.
Начальные температуры молекул метана (СН4) и тетрахлор-

силана (SiCl4) во всех расчетах были равны 3«102 °К, а начальная

температура аргона менялась в пределах от 1,5.104 до 3«104 °К.

Начальные концентрации аргона и реагирующего газа

равнялись 0,5-1018 молекул/см3. Процессы рекомбинации не

учитывались (эти процессы становятся существенными только при
значительной степени диссоциации). Для энергий активации молекул

СН4 и SiCl4 были приняты значения (2?а)сн4 = 91 ктл/молъ,
(Ea%icu = 88 ккал/молъ [22, 23]*.

Известно, что хотя обе реакции являются

мономолекулярными, кинетический порядок этих реакций может быть различным
и зависит от выбора начальных концентраций и температур.
Условию tc <^ т будет соответствовать первый порядок, а условию
U ^> т — второй. Здесь tG — среднее время свободного пробега
молекул. При выбранных нами начальных условиях tc = 0,5*
•1СГ9 сек.

Определенный интерес представляет изучение кинетики

термического разложения молекул для реакций разного порядка.
Средние времена жизни т молекул СН4 и SiGl4 в активированном
состоянии были взяты равными соответственно 0,2.10~13 и 0,2.
•10~8 сек. Эти значения т с учетом порядка величины tG

соответствуют второму порядку реакции разложения молекул СН4 и

первому порядку реакции разложения молекул SiCl4.

* Соответствующие константы скоростей определены в работах [22, 23] для

температур не выше 5000°К. Вопрос об обоснованности экстраполяции этих

значений к температурам ~3-104 °К, так же как, впрочем, и о

применимости для таких температур формулы Аррениуса (25), вызывает сомнения.

Однако в силу грубости самой модели полученные результаты являются

качественными, поэтому вопрос о точности выбранных значений является

второстепенным.
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Все численные расчеты проводились при помощи метода

Монте-Карло на основе модели непрерывного пространства
скоростей. Система состояла из 108 частиц. Для каждого варианта
генерировалось 20 цепей с последующим усреднением результатов
в отдельные моменты времени. Ошибка полученных результатов
не превышала примерно +2%.

Алгоритм расчетов отличался от схемы, изложенной на

стр. 188, следующим. Очередным событием для системы,

характеризуемой набором скоростей всех частиц (и1? v2,...), может

явиться как упругое столкновение, так и распад какой-либо

химически активной молекулы (если, конечно, среди них есть

молекулы с Ек > Еа). Поэтому наряду со временем tc, через

которое может произойти первое упругое столкновение (см. формулу
(12) на стр. 185), надо разыграть время £р, через которое может

произойти первый распад молекулы из числа молекул с Ek > Ea.
С учетом формулы (26) для tc получается следующее выражение:

*р = -£ 1п(1 — £), (27)

где N
— число молекул, для которых выполняется условие Ek ^

> Еа; I — случайное число, равномерно распределенное в

интервале (0,1).
Выкладки, приводящие к формуле (27), полностью

аналогичны формулам (9) — (12) на стр. 185. При условии tG < tv
считается, что произошло упругое столкновение, в противоположном
случае — химическая реакция (в «счетчик» времени заносится

величина min {tGtv}.

30000

20000 -

10000 -

К Ю~асек

Рис. М. Зависимость от времени

средних энергии молекул аргона

(1) и метана (2) при Т \т= 3- 104°К

и Г£Н4= 3 . 102 °К

сек

Рис. 65. Зависимость от времени

средних скоростей молекул

аргона (1) п метана (2) при Т°^т =
= з. ю4 °к и т°сн^ = з . ю2 °к
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Рис. 66. Функции распределения
молекул метана по скоростям в

первые моменты времени

l — t = 2At, 2 — 2= 4 Л* (At ^

=0, 576 • 10-f сек). No — начальное
число молекул

Рис. 67. Функции распределения
молекул метана по скоростям в

поздние моменты времени

1 — t = 6Д*; 2 — * = 12Д* (At =

=0,576 • 10~9 сек). No — начальное

число молет*-711

\v\, 105см/сек

Выход, %
50

Рис. 68. Зависимость от времени

концентраций радикалов СН3 (i,
2, 4) и SiCl3 (5) в пересчете на
начальные концентрации СЩ и

SiGI4 при разных начальных

температурах аргона

1, 3 — 3 • 104; 2—2 • 10*; 4—1,5 •

,
10'9свк



Ниже приводятся основные результаты расчетов. На рис. 64

показаны зависимости от времени средних энергий молекул
метана и аргона, а на рис. 65 — аналогичные зависимости для

средних скоростей. На рис. 66 и 67 изображены функции
распределения молекул метана по скоростям в разные моменты времени

при начальных температурах метана 3*102 и аргона 3«104°К.

В первые моменты времени процесс передачи энергии от молекул

аргона молекулам метана в соответствии с результатами,
изложенными на стр. 196, является неадиабатическим. Функция
распределения молекул метана по скоростям сильно неравновесна

(см. кривая 2, рис. 66). Процесс носит такой характер вплоть до

t ж 3.10"9 сек.

Отличие кривых на рис. 64 и 65 от соответствующих
зависимостей, приведенных на стр. 194, объясняется утечкой энергии
системы по координате химической реакции.

Если обратиться теперь к зависимости выхода радикалов

СН3 от времени (рис. 68), то видно, что скорость их образования
особенно велика в начальные моменты времени, а после tzz. Зх
X 10~9 сек заметно падает (особенно для кривой 1 на рис. 68). Этот

факт можно объяснить возникновением в начальные моменты

времени высокоэнергетического крыла у функции распределения
молекул метана. чВвиду того, что при тсн4 <2 fc практически все

молекулы, имеющие энергию выше или равную энергии

активации, распадаются по схеме (А), и функция распределения
обращается в нуль для скоростей, больших, чем скорости,

соответствующие энергии активации (см. рис. 66,67). Однако вплоть до

t х 3«10~9 сек обеднение высокоэнергетического крыла из-за

утечки горячих молекул по координате реакции (А) немедленно

компенсируется активирующими столкновениями молекул метана

с молекулами аргона. Такой характер процесс носит до тех пор,
пока начальный пик функции распределения молекул аргона

(а значит и начальный пик функции распределения молекул

метана) будет достаточно интенсивным. Последнее же условие
означает сильную неравновесность функций распределения и неа-

диабатичность процесса. Следовательно, относительно большая

скорость протекания реакции (А) — реакции второго порядка —

до t ж 3«10~9 сек обусловлена неадиабатическим характером
процесса передачи энергии от молекул аргона к молекулам метана.

После t ж 3 • 10~9 сек скорость образования радикалов СН3
заметно падает. Таким образом, при адиабатическом характере

процесса максвеллизации утечка горячих молекул метана по

координате химической реакции не успевает компенсироваться
процессом активации молекул метана при их столкновениях с

молекулами аргона. Своеобразное плато на кривой выхода радикалов

СН3 (например, кривая 1 на рис. 68) соответствует по времени
смене режимов процесса максвеллизации (сравни с рис. 64).

Кинетика разложения молекул тетрахлорсилана
существенно отличается от кинетики разложения метана. Хотя в началь-
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ные моменты времени и образуется высокоэнергетическое крыло

функции распределения молекул SiCL, скорость образования
радикалов SiCla почти не меняется со временем (см. рис. 68). Это

объясняется тем, что поскольку tsic»i ^> tc, скорость как

активации, так и дезактивации молекул SiCl4 существенно превышает

скорость распада этих молекул. Иными словами, скорость
образования радикалов SiCl3 определяется не скоростью подачи

молекул SiCl4 в высокоэнергетическое крыло функции распределения,
а стационарной заселенностью области скоростей с Ek^ Еа
(усредненной по отрезкам времени t ^ tsicij. Отсюда следует,
что скорость образования радикалов SiCl3 не должна зависеть от

характера процесса максвеллизации, поскольку на обоих этапах

высокоэнергетическое крыло функции распределения молекул

SiCl4 меняется незначительно (см. стр. 195). Кривая 3 на рис. 68

подтверждает этот вывод. Интересно, что в начальные моменты

времени скорость образования радикалов СН3 значительно

превосходит скорость образования радикалов SiCl3, несмотря на то

что (Еа)ст ^> (Ea)sicu (начальные температуры аргона в двух

вариантах для системы метан — аргон также значительно меньше,

чем для системы SiCl4 — аргон). Кривые 3, 4 рис. 68 наглядно

иллюстрируют различия кинетики реакций (А) и (В), связанные с

разным порядком этих реакций.
Таким образом, сильная неравновесность функций

распределения в начальные моменты времени оказывает существенное
влияние на протекание реакций разложения молекул в том случае,

когда эти реакции кинетически являются реакциями второго

порядка. Этот вывод носит достаточно общий характер. Ясно, что

при т <^ tG скорость реакции не должна практически зависеть

от конкретной величины т. Это подтверждается результатами
проведенных нами дополнительных расчетов. Начальная

неравновесность будет оказывать сильное влияние при не слишком

больших значениях EJRT. Следовательно, для реакций с небольшими

энергиями активации этот эффект должен иметь место и при
сравнительно невысоких температурах.

Из результатов, изложенных на стр. 211, следует еще один

вывод общего характера. Поскольку скорости реакций
разложения молекул типа (А) (реакций второго порядка) при
неадиабатическом режиме процесса максвеллизации выше, чем при

адиабатическом, выход радикалов в начальные моменты времени

будет больше в случае бинарной смеси с разными начальными

температурами компонентов (Та, Т$), чем в случае равновесного
состояния системы с общей температурой

2

Наконец следует остановиться еие на одном важном

обстоятельстве. Из рис. 64 следует, что даже в квазистационарном

режиме (начиная с £ж6-10~9 сек) средняя энергия молекул
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метана существенно меньше средней энергии молекул аргона.

Проведенные расчеты показывают, что с ростом скорости реакции

(А) (т. е. с ростом температуры) разность {Ек)снА — (Eu)at
возрастает. Такой результат вполне ясен и объясняется постоянным

стоком молекул метана, имеющих Е% > Еа. Таким образом,
при достаточно интенсивных реакциях не имеет смысла говорить о

какой-то температуре смеси метана и аргона.
В связи с этим интересно выяснить вопрос о характере

отклонений функций распределения молекул химически активного газа

от максвелловских. Качественно эти отклонения можно

наблюдать на рис. 67 при сравнении кривых 1 я 2. Однако точность

результатов, особенно на «хвостах» функций распределения, не

позволяет сделать достоверных количественных выводов.

§ 5. Нарушение максвелл-больцмановского
распределения молекул быстрыми химическими реакциями

и влияние возникшего распределения на скорость реакции

В § 4 данной главы изучалась кинетика реакций термического

разложения молекул метана и тетрахлорсилана при высоких

температурах. Из результатов численных расчетов по методу

Монте-Карло были сделаны следующие основные выводы: 1) при
протекании быстрых реакций в смеси химически активных молекул
и атомов инертного газа невозможно ввести понятие температуры

системы в целом; 2) химические реакции нарушают максвеллов-

ское распределение молекул. Однако недостаточно высокая

точность расчетов, особенно на крыльях функций распределения,
не позволила достоверно установить характер такого нарушения.

Целью настоящего параграфа является более тщательное
изучение этого вопроса.

Рассмотрим следующую модель. Концентрация
интересующих нас химически активных молекул много меньше

концентрации атомов инертного газа (модель молекул, погруженных в

термостат); в этом случае можно учитывать только столкновения

молекул с атомами термостата и реакцию разложения молекул,
причем температуру термостата можно считать постоянной.

Пусть в начальный момент времени распределение молекул
по скоростям является максвелловским с температурой, равной
температуре термостата. Химическая реакция будет нарушать

равновесное распределение молекул, а упругие столкновения

с атомами термостата — компенсировать это нарушение. В

результате через определенный момент времени система перейдет
в квазиравновесное состояние, характеризуемое некоторой
функцией распределения молекул по скоростям и константой скорости
химической реакции.
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Следует отметить, что ограничения, накладываемые на

физическую систему такой моделью, не являются необходимыми
с методической точки зрения. В § 1 данной главы описаны

модификации метода Монте-Карло, позволяющие решать подобные
задачи при любом соотношении начальных концентраций
молекул и атомов инертного газа. Например, в § 4 эти концентрации
были взяты равными друг другу. Однако модель термостата
обладает следующим преимуществом: начиная с некоторого момента

времени функция распределения молекул по скоростям,
нормированная на единицу, и константа скорости химической реакции не
меняются со временем (в случае неизотермической системы
такое квазиравновесное состояние не будет иметь место). Кроме
того, для решения задачи в такой постановке пригодна обычная

«линеаризованная» схема метода Монте-Карло (см. § 1 и

цитированную там литературу), что позволяет при сравнимых затратах
машинного времени повысить точность результатов.

Как и на стр. 207, молекулы газа аппроксимировались
твердыми невзаимодействующими шарами, причем их масса и диаметр
соответствовали молекуле метана. Считалось, что сечение

реакции

СН4 —> СН3 -j- Н

равно нулю при Е <D и постоянно при Е > D, где Е —

кинетическая энергия молекул, a D — энергия диссоциации. Было

сделано предположение, что в состояниях Е ;> D время жизни

молекул распределено по закону

f(t) = ±exj?(—t/T). (28)

В случае, если разыгранное в соответствии с выражением (28)
время жизни молекулы оказывалось меньше времени ее

свободного пробега, считалось, что произошла химическая реакция.
В противном случае разыгрывалось упругое столкновение этой

молекулы с одним из атомов термостата. От такой модели

нетрудно перейти к схеме, согласно которой неупругие процессы

происходят непосредственно в момент столкновения. Очевидно,
что меньшие значения средних времен жизни т соответствуют
большим значениям сечения реакции. Для энергии диссоциации было

выбрано значение D = 86,4 ккал/молъ [23]. Инертным газом

являлся аргон с концентрацией атомов 1018 см~3.
На основе изложенной модели была проведена серия расчетов

для пяти значений температуры термостата и начальной

температуры молекул метана — 5000, 7500, 10 000, 12 500 и 15 000° К.

При каждом значении температуры варьировалась также величина

среднего времени жизни молекулы т в состояниях E^D. При
выбранной концентрации атомов термостата среднее время

свободного пробега молекул £с^0,5.10~9 сек. Поэтому значение
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Рис. 69. Зависимость от времени Рис. 70. Зависимость от времени

средних энергий молекул метана средних энергий молекул метана

т= 0,5 • 10"9 сек т= 0,2 • 10"18 сек

i = 15 000°; 2—12 500°; 3 — 10 000е' Обозначения те же, что и на рис. 69
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Рис. 71. Зависимость от времени Рис. 72. Зависимость от времени

величин ^ для т = 0,5 -Ю"9 сек величин _для т= 0,2 .10~13 сек

Обозначения те же, что и на рис. 69 Обозначения те же, что и на рис. 69
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Рис. 73. Функции распределения молекул метана
по скоростям при 15 000°К

1 — начальная функция распределения ; 2 и з —

равновесные функции соответзтвенно для т = 0,5 • 10~9 сек

ит= 0,2 • 01-13 сеп

т = 0,5* 10 8
сек будет соответствовать первому кинетическому

порядку реакции, а т = 0,2.10~13 сек — второму порядку. В

качестве третьего значения т была выбрана промежуточная
величина — т = 0,5-10~9 сек.

В каждом из расчетов прослеживалась история 5«104 молекул,

поэтому статистическая ошибка полученных результатов не

превышала 1 %. Во всех вариантах результаты расчетов выводились
из памяти машины через определенный временной шаг (общее
число шагов равнялось сорока). Величина шага была выбрана
таким образом, что система приходила в состояние равновесия

примерно за 20 шагов. В дальнейшем величины, характеризующие
систему, испытывали слабые статистические флуктуации. Таким
образом, были получены результаты, характеризующие как

кинетику перехода системы из начального состояния в равновесное,
так и само равновесное состояние. Контроль равновесности
системы производился независимо по значениям функций
распределения молекул по скоростям, средней энергии молекул, вкладу

поступательных степеней свободы молекул в ТзГ-функцию Больц-
мана и константе скорости химической реакции. Все эти величины

принимали свои равновесные значения практически одновременно.
На рис. 69 и 70 показан ход изменения со временем средних

энергий молекул метана для случаев т = 0,5Л0~9 и т = 0,2-
Л0~13сек соответственно. На рис. 71 и 72 представлены
соответствующие зависимости величин AN/N от времени; здесь AN —

число продиссоциировавших молекул за временной шаг Д£ =

= 1,25-10"10 сек, а N — среднее число молекул в промежутке
времени (t, t -j- Д£). Видно, что равновесные значения этих величин
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довольно заметно отличаются от начальных, особенно в случае

% = 0,2-10 13 сек (см. рис. 70, 72)
W- На рис. 73 показаны начальная и равновесные функции

распределения молекул по скоростям при 15 000° К, а на рис. 74 —

аналогичные функции при 10 000° К. Из этих кривых следует, что

при т = 0,2.10"13 сек высокоэнергетическое крыло функций
распределения Е > D практически отсутствует (см. также стр. 210).
Этот факт является следствием того, что при x<^tc скорость

химической реакции значительно превышает скорость активации

молекул при их столкновениях с атомами термостата.

В случае т ^> tc равновесные функции распределения

молекул по скоростям мало отличаются от начальных и на рис. 73 и

74 не приведены. Убыль молекул с Е > D вследствие реакции

практически мгновенно компенсируется активацией нормальных

молекул при столкновениях.

В случае т ж tG оба процесса
— активация молекул и

диссоциация
— находятся в состоянии динамического равновесия, а

функция распределения молекул претерпевает разрыв в точке,

соответствующей Е = D.

Отметим следующее важное с нашей точки зрения

обстоятельство. Если исходить из гипотезы о сильных активирующих

столкновениях [24], то в рамках нашей модели уменьшение заселен

ности высокоэнергетического крыла равновесной функции
распределения по сравнению с начальной максвелловской функцией
должно было бы происходить, начиная только с Е >Z). Однако
из рис. 73 и 74 следует, что такое уменьшение имеет место и при

Е <"D. Скорость, при которой значения начальной и равновесной

v, 10°см/сек.

Рис. 74. Функции распределения молекул метана

по скоростям при 10 000°К

Обозначения те >кэ, чтэ и на риз. 73
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функций распределения совпадают, практически не зависит от

значения т при данной температуре термостата и примерно
соответствует средней энергии молекул Е. Такая форма равновесной
функции распределения молекул может быть объяснена только

ступенчатым механизмом дезактивации молекул при £>/),
поскольку только при этом предположении уменьшение величины

w

-s

-6

-4

^^* ^^^^

- y*C^y^ **

1 1

-CD

1

0,5 15 2,0

f Z/7'

Рис. 75. Зависимость равновес-
л AN

ных значении величин In
N

от обратной темлературы
А

(сплошные линии) и от—

П тр \

Т* = ) (пунктирные ли-

3 /г у

НИИ)

1 — т = 0,5 • 10е- сек;
2 — т = 0,5 • 10~f сек;
5 — т = 0,2 * Ю-18 сек

функции распределения в области Е ># (из-за химической

реакции) влечет за собой и уменьшение величины этой функции в

области f <£ <Д. В то же время в гипотезе о сильных столкно*

вениях [24] предполагается, что частота столкновений,
переводящих молекулу из состояния i во все другие состояния /, не

зависит от г. Согласно же принципу детального равновесия,

активация молекул также должна быть преимущественно ступенчатой.
Ступенчатый механизм активации молекул должен сказаться

в свою очередь на скорости диссоциации. Этот вопрос будет
рассмотрен ниже.

Перейдем теперь к обсуждению температурной зависимости

равновесных констант скоростей химической реакции. Прежде
всего отметим следующее. В большинстве экспериментальных
работ по определению констант скоростей реакции считается

справедливым выражение Аррениуса (25). Из результатов § 4 следует,
что при больших скоростях химических реакций системе нельзя

приписать какую-либо температуру. При обработке
экспериментальных данных значение температуры, входящее в выражение

(25), определяют из уравнения баланса энергии системы [23J.
В условиях нашей модели в формуле (25) следует поставить

температуру термостата. Зависимость величин lg AN/N от обратной
температуры для трех значений времени жизни т молекулы в

состояниях Е ;> D показана на рис. 75.

Видно, что для всех трех значений т константы скоростей
описываются выражением Аррениуса (25). Из прямых рис. 75
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можно определить значения к0 и Еа, которые приведены в табл. 16.

Как и следовало ожидать [24], значения Еа меньше истинной

энергии диссоциации D = 86,4 ккал/молъ.
Поскольку равновесные функции распределения молекул

существенно отличаются от максвелловской, понятие температуры
системы молекул, строго говоря, не имеет смысла. Тем не

менее положим формально Т* = 2/3 Ё/R (здесь Ё — средняя
кинетическая энергия молекул в равновесном состоянии).
Зависимости величин In ЫЧ /N от 1/Г* показаны на рис. 75. Видно, что

в случаях т = 0,5» 10~8 ит = 0,5-10~9 сек температурная
зависимость константы скорости описывается выражением (25), а в

случае т = 0,2.10~13 сек — нет. Причина заключается в разных
кинетических порядках реакции. В первых двух случаях

скорость реакции определяется в значительной степени

стационарной функцией распределения молекул по скоростям. В третьем

случае скорость реакции определяется частотой столкновений

молекул с атомами термостата, ведущих к активации молекул.

Последняя же величина зависит в основном от

высокоэнергетического крыла функции распределения атомов термостата,

являющейся в рамках нашей модели максвелловской. По-видимому,
именно это является причиной, по которой зависимость константы

скорости от температуры термостата для случая т = 0,2-10~13 сек

имеет форму выражения Аррениуса (см. рис. 75). В более реальном

Таблица 16

Энергии активации Еа и предэкспоненциальные

множители ко для разных времен жизни

0

0

0

,5

,2

г, сек

.10-9
• 10~13

Еа, кпал'моль

79,69

73,29

77,50

3,

1,

2,

2

6

9

сек*1

• Ю8

• 109
• 109

неизотермическом случае (например, для замкнутой системы

молекул) единственной величиной, которую можно подставить
вместо температуры в формула (25), является Т*. Следовательно,
скорости реакций второго аорядка термического разложения
молекул (т <^ tc) нельзя описывать выражением типа Аррениуса.
В этом предельном случае наиболее велики и отклонения от

функции распределения Максвелла (см. рис. 74). Последний вывод
был сделан ранее в работе [25] и в § 4 настоящей главы.

Если в показатель экспоненты (25) подставить истинную
энергию диссоциации D (определенную, например, спектроскопи-
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чески), то предэкспоненциальный множитель к0 будет зависеть

от температуры. На рис. 76 показаны зависимости этого

множителя от величины D/RT. Для всех трех значений т зависимость

к0 от температуры термостата является отрицательной.

ко,Ю9сек'1

Рис. 76. Зависимость предэкс-

поненциальных множителей

к0 от величины

1 — т = 0,5 • 10-' от; 2 — т =

=0,5 • Ю-9 сек; 3—т= 0,2 • 10"13 свК

В случает = 0,2-10~13 сек константа скорости с хорошей
точностью описывается выражением

А = 1,52-108-20(/)/Д71 + 1)^335вхр(— D/RT)cmV моль-сек,

(29)
а в случае т = 0,5-10 9

сек — выражением

к = 1,15 -108. zo(D/RT + l)lf096exp (— D / RT) см3 / моль-сек.

(30)
Здесь z0

— частота столкновений молекул с атомами термостата
при единичной концентрации последних. Отметим, что из

элементарной теории диссоциации в случае отсутствия внутренних
степеней свободы следует

к = A-zo(D I RT + 1) exp (— D / RT). (31)
Таким образом, из результатов наших расчетов получается более
сильная отрицательная температурная зависимость предэкспонен-
циального множителя в константе скорости реакции. Этот

эффект можно объяснить уменьшением функции распределения
молекул в области Е <iE << D по сравнению с распределением
Максвелла. Если считать, что механизм активации молекул носит

в значительной степени ступенчатый характер, то такое

отклонение от функции Максвелла должно привести к уменьшению
частоты активирующих столкновений, а следовательно и

скорости реакции. Поскольку отклонение от распределения Максвелла
сильнее в случае т = 0,2.10~13 сек, то и отрицательная

температурная зависимость в этом случае должна быть сильнее, что и

следует из рыращений (29) л (30),
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В заключение отметим следующее. Тот факт, что в описанных

выше расчетах использовались конкретные значения

концентрации атомов термостата, энергии диссоциации молекул и

среднего времени жизни молекул в активированном состоянии, не

ограничивает общности полученных результатов. Действительно,
переход к другим концентрациям эквивалентен введению
постоянного коэффициента для величины физического времени. Переход
к другим величинам т можно заменить переходом к другим

концентрациям атомов термостата, поскольку результаты расчетов
зависят практически от безразмерной величины т/£с. Наконец, эти

результаты фактически не зависят от конкретных значений D

и определяются параметром D/RT.
Конкретная модель, принятая в описанных расчетах,

соответствует так называемой элементарной теории диссоциации. В

рамках метода Монте-Карло можно без принципиальных затруднений
рассмотреть более совершенные модели. В значительной степени

этот прогресс сдерживается отсутствием данных по сечениям

химических реакций. С другой стороны, основной целью
проведенного исследования являлось установление главных

закономерностей нарушения максвелловского распределения молекул при
интенсивных реакциях, протекающих в системе, и обратного
влияния такого нарушения на скорость этих реакций. Основные
выводы, полученные в результате выполненных расчетов, не

зависят, на наш взгляд, от конкретных видов молекулярных моделей.

§ 6. Колебательная релаксация и диссоциация

ангармонических осцилляторов при высоких температурах.

Сравнительное изучение моделей
одноквантовых и многоквантовых

поступательно-колебательных переходов

Экспериментальные исследования колебательной

релаксации и диссоциации двухатомных молекул показали, что при
высоких температурах (для кислорода, например, начиная с

~ 8000° К) эти процессы перекрываются во времени [26—28].
С теоретической точки зрения это означает необходимость
совместного рассмотрения обоих процессов. Для модели обрезанного
гармонического осциллятора подобная задача рассматривалась,

например, в работе [29]. Однако такая модель представляется

неудовлетворительной прежде всего в силу запрета многоквантовых

поступательно-колебательных переходов. Действительно, в

работе [24] было показано, что скорость диссоциации очень сильно

зависит от того, в какой зоне дискретного колебательного спектра
находится энергия Е*ч разделяющая область адиабатических
и неадиабатическртх переходов; при сравнительно невысоких

температурах Т ~ 0 (где 6 — характеристическая колебательная

температура), когда Я* лежит вблизи энергии диссоциации^

К!



многоквантовых переходов существенно не меняет константы

скорости диссоциации [24]. Именно этим объясняется, по-видимому,
относительно хорошее согласие теоретических и

экспериментальных результатов в области Т х 6 [1]. Однако при переходе к более
высоким температурам область неадиабатических поступательно-
колебательных переходов будет расширяться, захватывая все

более низкие колебательные уровни, что должно повлиять на

кинетику рассматриваемых процессов.
В работе [30] для изучения связи колебательной релаксации

и диссоциации была применена диффузионная теория. При этом

система осцилляторов описывалась классической функцией
распределения по колебательной энергии. Отметим, что

аналитическое решение в замкнутом виде было получено в работе [30]
только для далекой от реальности модели гармонического осциллятора.

Для более реальной модели осциллятора Морзе были рассчитаны
только параметры квазиравновесного режима системы (кинетика
перехода системы в это состояние не рассматривалась).
Существенно, что в качестве коэффициента диффузии использовалось

выражение, полученное ранее численными расчетами для случая
сильно неадиабатических столкновений [31].

При описании системы осцилляторов функцией распределения
по дискретным колебательным уровням учет многоквантовых

переходов в рамках аналитических или традиционных численных

методов связан со значительными вычислительными трудностями.

Поэтому естественно обратиться к методу Монте-Карло.
В этом разделе будут описаны результаты двух серий

расчетов, выполненных без учета и с учетом многоквантовых переходов.

Рассматривалась система ангармонических осцилляторов,

составляющих небольшую примесь к инертному газу. Как и в работе
[32], дискретные уровни энергии осцилляторов задавались
соотношением

Ai?n-i, п
= Йсое (1 — 2хеп) (и = 0,1,.. ., nmax). (31а)

Были выбраны следующие параметры: G = h(ue/k = 2240° К;
хе = 0,007639; Z> = 118 ккал/молъ; ггтах = 35 (все они

соответствуют молекуле кислорода). Инертным газом являлся аргон.

В начальный момент времени все осцилляторы находились на

нулевом колебательном уровне *. Расчеты проводились при
помощи линеаризованной схемы метода Монте-Карло (см. глава III).

Для практической реализации случайного процесса, который
в нашем случае заключается в блуждении осцилляторов по ди-

* С точки зрения метода это условие не является необходимым. Начальное
распределение можно задать в любом виде.
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скретным колебательным уровням, необходимо задать вероятности

поступательно-колебательных переходов Рп,т для всех возможных

номеров уровней *. К настоящему времени вероятности
переходов рассчитаны достаточно надежно лишь в адиабатическом
приближении

где а — характеристический радиус действия межмолекулярных
сил; vr — относительная скорость сталкивающихся частиц [1].
При этом вероятности одноквантовых переходов имеют вид

Ландау—Теллера, а вероятности многоквантовых переходов \ т — п | ^>
;> 2 пренебрежимо малы. В противоположном предельном случае

(I <^ 1) при некоторых дополнительных ограничениях оценки

вероятностей переходов сделаны, например, Осиповым для
модели осциллятора Морзе [33]. К сожалению, в промежуточной
области £ ~ 1 имеется только несколько численных модельных расчетов.

В связи с этим нами была принята следующая схема. В
нижней части дискретного спектра разрешены только переходы между

соседними уровнями, а вероятности таких переходов имеют вид [1]

(32)
где \i

—

приведенная масса сталкивающихся частиц; А —

константа.

В верхней части колебательного спектра вероятности
переходов были взяты аналогично работе [33] в виде

АIАЕп

здесь р — параметр потенциала Морзе, а В — константа. В

промежуточном случае выражение (32) должно, естественно,

переходить в (33). Нами считалось, что для уровней п = 0, 1, . .
., птр

справедливо выражение (32), а для п ^> пгр
— выражение (33).

Численные расчеты проводились при нескольких значениях

температуры (8-Ю3; 104; 1,2-Ю4; 1,5-104; 1,5-10* и 2-104 °К).
Выбор ?гГр в значительной мере произволен, однако ясно, что этот номер
должен уменьшаться при повышении температуры. В наших

расчетах при 2 • 104 °К было принято пГр = 5. При этой температуре

приравнивались значения вероятностей Рб,б» вытекающие из выражений
(32) и (33). После такой процедуры при переходе к другим темпе-

* Заметим, что метод Монте-Карло допускает произвольный способ задания
этих вероятностей, например табличный. Это никак не отражается на

алгоритме решения задачи.
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ратурам номер тггр автоматически сдвигался. Например, для Т —

= 1,2104 °К птр = 15, а для Т = 8-103° К игр = 24.

Многоквантовые переходы (вплоть до пятиквантовых) считались

разрешенными для п > тггр. Вероятности дезактивирующих переходов
вычислялись, естественно, по соотношению

Pn+r, n
= РП9 п+г ехр (ДЯЯ, п+г I кТ). (34)

Остающийся неопределенным один из коэффициентов в формулах
(32) и (33) находился из условия нормировки

5

2РП(П±Г- 1 при п = 35 и Т = 8-Ю3 °К.
г=1

Для каждой молекулы разыгрывались блуждания по

колебательным уровням, начиная с п = 0. Если в какой-либо момент

времени оказывалось, что п ^> 35, молекула считалась продиссо-

циировавшей. Кроме этого случая, «траектория» каждой молекулы
обрывалась после достижения определенного момента времени

*тах- Величина £тах выбиралась отдельно для каждого варианта
расчета так, чтобы к этому моменту вся система заведомо

приходила в состояние квазиравновесия. Контроль квазиравновесности

производился независимо по значениям функций распределения

молекул, их колебательной энергии и константе скорости

диссоциации. Все эти величины принимали свои квазиравновесные
значения практически одновременно и в дальнейшем не изменялись

в пределах статистической ошибки. При каждом значении

поступательной температуры расчеты проводились с учетом

многоквантовых переходов (вплоть до пятиквантовых) и отдельно
— с

учетом только одноквантовых переходов. Результатами расчетов
являлись функции распределения молекул по колебательным
уровням и число продиссоциировавших молекул в отдельные моменты

времени. Таким образом, изучалась как кинетика перехода
системы из начального состояния в квазиравновесное, так и само

квазиравновесное состояние. Во всех вариантах расчета
прослеживалась история 4.104 молекул, поэтому статистическая ошибка

результатов не превышала 1%.

Рассмотрим прежде всего результаты, относящиеся к

кинетике перехода системы из начального в равновесное состояние.

Из рис. 77, а следует, что при отсутствии многоквантовых

переходов функция распределения в первые моменты времени
сохраняет больцмановскую форму. В дальнейшем процесс диссоциации

молекул уменьшает относительную заселенность верхних

уровней. При учете многоквантовых переходов общая колебательная
температура отсутствует даже в моменты времени,

предшествующие заметной степени диссоциации. Это связано с более сильной
зависимостью вероятностей переходов от колебательной энергии
молекул, чем для модели гармонического осциллятора. Область
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Рис. 77. Функции распределения молекул по колебательным уровням в

отдельные моменты времени при поступательной температуре 20 000°К;

а — без учета многоквантовых переходов: 1 — t = 0,123 xfe; 2 — t — 0,615 xfc; 3 —

* == 1,353 т^; 4 — / f= 3,075 xfc;
б — с учетом многоквантовых переходов: I — t =

= 0,066тЛ; 2 — t = 0,198 Tfc; 5 — t = 0,330 Tfe; 4 — t = 0,726т&

резкого изменения наклонов кривых рис. 77, б соответствует

п = тггр. Из этих наклонов можно определить «локальные»

колебательные температуры для п < птр и п ^> тггр. Например,
для кривой i на рис. 77, б эти температуры соответственно равны
~ 1700 и ~ 18600° К. В дальнейшем «локальная» температура

уровней п ^> тгГр практически не меняется.

Из рис. 78 видно, что при учете многоквантовых переходов
и в квазиравновесном состоянии «локальная» температура
уровней п ^> игр равна поступательной температуре Tt вплоть до уров-
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ней, уменьшение заселенности которых обусловлено диссоциацией.
Резкое изменение наклонов кривых при п = тггр является

следствием грубости произведенного нами сшивания вероятностей

адиабатических и неадиабатических переходов. Однако сам факт

перезаселенности уровней, лежащих несколько ниже границы

дискретного спектра, является несомненным. Отметим, что

аналогичный результат был получен ранее в работе [30].

Рис. 78. Отношение

квазиравновесных заселенностей

уровней к больцмановским

при учете многоквантовых

переходов при различных

поступательных

температурах

j_8000°- 2—10 000°; 5—12 000°;
4—15 000° 5—20 000°К

0 0,2 ЦЦ 0,6

Для характеристики квазиравновесного режима авторы [30]

ввели так называемые времена задержки установления
равновесных значений AtQ различных моментов Q колебательной функции

распределения. Эти времена определяются из соотношения

(Зэ)
Г

L

где Q (t) — какая-либо величина, характеризующая систему;

Qo — значение этой величины для равновесного (больцмановского)
состояния в отсутствие диссоциации: тд

— характерное время

диссоциации.

Зависимости рассчитанных нами величин — и — —— от

тд тд

температуры показаны на рис. 79. Здесь А^д и Afe — времена

задержки соответственно диссоциации и колебательного

возбуждения молекул. Там же приведены результаты авторов работы [30].
Параметр ангармоничности у

= (1/Зп$а)2\1/т в случае столкновения

Аг __ О2 равен примерно 2. Времена задержки диссоциации

были измерены в работе [28] в интервале температур 5500—

18 000° К. Правда, авторы работы [30] утверждают, что в работе
[28] измерялись фактически времена задержки коэффициента
поглощения полосы Шумана — Рунге А^. При этом величины

Ati отождествляются в работе [30] с временем задержки для

заселенности нулевого колебательного уровня. С нашей точки зре-
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Рис. 79. Зависимость величин —=

тд

(пунк(сплошные линии) и — -

"д

тирные) от _—

HI

1,2 — с учетом, 3,4
— без учета

многоквантовых переходов; ,5 — 8 —

результаты работы [30] для у = 1 (б, 8) и у = 3

<5, 7)

//7°

Рис. 80. Зависимость величин
—

от JD/ЯТ1 Д

i—4 по данным работы [30] при у = 0, 1,
3 и 5 соответственно; 5, б с учетом и без

учета многоквантовых переходов.

Точки — результаты работы [28]

(цитируются по [30])

Рис. 81. Зависимость величин —

Ч
от Tt
1,2 — без учета и с учетом

многоквантовых переходов соответственно.

Точки — результаты работы [28]



ния такой подход не является очевидным. Из экспериментов
Камака [34] следует, что, хотя основной вклад в коэффициент
поглощения вносят нижние колебательные уровни, начиная

примерно с 7500° К, этот коэффициент не зависит от колебательной
температуры. Если следовать этому результату, то величины

Ati и Дгд должны совпадать для температур выше 8000° К (именно
это предполагается в работе [28]). Результаты Рея [28], а также

расчетные значения, полученные авторами работы [30] и нами,

приведены на рис. 80.

Эти данные можно представить в другом виде, выбрав в

качестве временной шкалы времена колебательной релаксации т^

Рис. 82. Зависимость величин ?к
T

от Tt
1,2 — с учетом и 3, 4 — без учета много-

квантовых^переходов для момента време-

шГдгд (1~3) ив явазиравновесном режиме

(2, 4)\ 5,6 — результаты работы [30] для

квазиравновесного режима при v = 1 и 3

соответственно.

Точки — усредненные!результаты работы
[28] в момент t = Д*

д

(рис. 81)*. На рис. 82 показаны температурные зависимости

величин Tv/Tt (Tv — эффективная колебательная температура),
вычисленные Реем при t= Д£д, и соответствующие результаты наших

расчетов. Из рис. 80—82 видно, что результаты расчетов при учете
многоквантовых переходов вполне удовлетворительно совпадают
с экспериментальными данными. В то же время модель однокван-
товых переходов (близкая к модели гармонического осциллятора)
приводит к результатам, сильно отличающимся от эксперимента
как в количественном, так и в качественном отношении. Хорошее
согласие результатов для модели многоквантовых переходов

свидетельствует о незначительности ошибки, вносимой гру-

В качестве т^ в работе [28] были взяты экстраполированные значения,

измеренные Камаком [34] при температурах 75009К. По-видимому, это не

должно приводить к большой погрешности, поскольку зависимость т^ от

Tt в широком интервале Tt хорошо согласуется с теорией Ландау — Тел-

лера. Из наших расчетов следует, что отклонение от этой теории
становится заметным только при Tt ~ 20 000рК.
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рис. 83. Зависимость константы

скорости диссоциации от обратной
температуры
j^ 2 — соответственно с учетом и без

учета многоквантовых переходов; з —

экстраполяция результатов работы [28].

Точки — результаты работы [27]

бостью «сшивки» вероятностей
адиабатических и
неадиабатических переходов. Физически такой

результат показывает, что

степень нарушения равновесной
функции распределения, как и

скорость диссоциации,

определяется энергией Е*, разделяющей
области адиабатических и

неадиабатических столкновений.

Именно скорость
колебательного возбуждения молекул в

области Z?* лимитирует скорость
процесса.

На рис. 82 приведены также величины Tv/Tt в

квазиравновесном режиме. Из кривой 2 на рис. 82 следует наличие минимума

в области температур 15 000—20 000° К. Отметим, что

возможность появления такого минимума при высоких температурах

формально следует и из работы [30]. Действительно, в

квазиравновесном режиме

(36)

где Ev — средняя колебательная энергия в квазиравновесном

состоянии; 2?о — в равновесном.

Согласно работе [30], величина! ) имеет максимум в
\ тд /

области Tt ~ 18 000° К, а при Tt ^ 25 000° К меняет знак.

Физически появление минимума зависимости Tv/Tt от Tt связано с

уменьшением энергии Е* при повышении температуры. Это

приводит к появлению инверсионной области E/D ж 0,4 (см. рис. 78)*.
Качественное согласие результатов, полученных нами и

авторами работы [30], вполне удовлетворительное (см. рис. 79, 80).
Количественные расхождения связаны, вероятно, с различиями
в принятых моделях. На наш взгляд, температурная зависимость

* При высоких температурах заселенность уровней в этой области
становится существенной для средней колебательной энергии молекул.
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рассчитанных нами величин А*д/Тд более соответствует
экспериментальным данным Рея [28], чем результаты, полученные в

работе [30].
В связи с этим отметим, что использованное в последней

работе выражение для коэффициента диффузии было рассчитано
для случая сильно возбужденных молекул и без достаточных
оснований экстраполировано в область малых энергий.

Рассчитанные нами абсолютные значения константы

диссоциации молекул сильно отличаются от экспериментальных
данных Рея [28] (рис. 83). Причиной этого является, по-видимому,

неучет вращательных и электронных степеней свободы молекул.
Из многочисленных экспериментальных данных (см., например,

[27]), следует, что при Tt^.7500°К предэкспоненциальный
множитель к0 в выражении для константы скорости диссоциации

обратно пропорционален температуре. Аналогичная зависимость

получена для модели одноквантовых переходов (см. рис. 83).
В то же время, согласно высокотемпературным измерениям [28],
константу скорости можно аппроксимировать аррениусовским
выражением. Такой результат можно объяснить уменьшением
энергии Е*, разделяющей области адиабатических и

неадиабатических переходов [24]. Из результатов расчета для модели
многоквантовых переходов следует, что к0 ~ Т15. Однако учет
возбуждения электронных уровней молекул должен привести,
согласно оценкам Никитина [24], к дополнительной отрицательной
температурной зависимости множителя к0 при Tt^>> 104° К.

Другим компенсирующим механизмом может явиться нарушение мак-

свелловской функции распределения молекул по скоростям *.

Наконец, к моменту установления квазиравновесного состояния

могут оказаться существенными процессы рекомбинации, которые
в проведенных расчетах не учитывались.

Из результатов расчетов следует, что с ростом температуры
возрастает роль неустановившегося режима. Например, при

Tt = 2.104° К около 75% молекул кислорода распадается к

моменту установления квазиравновесного режима. Поэтому область
применимости асимптотических выражений, полученных в

работе [30], невелика. В этих условиях уменьшается и практическая

ценность таких параметров, как xfc и тд.

В заключение отметим, что результаты, приведенные на

рис. 78—82, не зависят от способа нормировки вероятностей
переходов; в рамках модели гармонического осциллятора
невозможно достигнуть согласия с экспериментальными данными [28]

при высоких температурах. Как и следовало ожидать, результаты

* В § 5 этой главы для простой модели было показано, что нарушение
быстрыми химическими реакциями максвелловского распределения приводит
к дополнительной отрицательной температурной зависимости предэкспо-
ненциального множителя константы скорости реакции.
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для моделей одноквантовых и многоквантовых переходов

становятся близкими друг к другу только при Т{ <8.103°К.
Авторы выражают признательность С. А. Лосеву за

обсуждение результатов.

ЛИТЕРАТУРА

1. Е. В. Стпупоченко, С. А. Лосев, А. И. Осипов. Релаксационные
процессы в ударных волнах. М., «Наука», 1965.

2. Н. П. Бусленко, Ю. А. Шрейдер. Метод статистических испытаний. М.$
Физматгиз, 1961.

3. Метод статистических испытаний (метод Монте-Карло), серия СМБ. М.,
Физматгиз, 1962.

4. /. М. Hammersley, D. С. Handscomb. Monte Carlo methods. London,
Acad. Press, 1964.

5. /. K. Haviland. Rarefied gas dynamics, vol. 1. N. Y. Acad. Press, 1963.
6. N. Metropolis, M. Rosenbluth, A. Rosenbluth, A. Teller, E. Teller.

J. Chem.Phys., 21,1087 (1953).
7. M. Rosenbluth, A. Rosenbluth. J. Chem. Phys., 22, 881 (1954).
8. W. Wood, F. Parker. J. Chem. Phys., 27, 720 (1957).
9. W. Wood, /. Jacobson. J. Chem. Phys., 27, 1207 (1957).

10. W. Wood, F. Parker, /. Jacobson. Nuovo Cimento, Supl., 9, № 1, 133
(1958).

11. B. Alder, T. Wainwright. J. Chem. Phys., 27,1208 (1957).
12. T. Wainwright, B. Alder. Nuovo Cimento Supl. 9, № 1, 116 (1958).
13. B. Alder, T. Wainwright. The many-body problem. New York — London,

Interscience, 1963.
14. И. 3. Фишер. Статистическая теория жидкостей. М., Физматгиз, 1961.
15. /. Oppenheim, P. Mazur. Physica, 23, 197 (1957).
16. И. 3. Фишер. Докл. АН БССР, 4, 148, (1960).
17. G. Bird. Phys. Fluids, 6, 10 (1963).
18. G. Marsaglia. Ann. Math. Stat., 32, 899 (1961).
19. Б. Дэвисон. Теория переноса нейтронов. М., Атомиздат, 1960.
20. С. А. Денисик, Ю. Г. Малама, Л. С. Полак, Р. А. Резванов.

Теплофизика высоких температур, 5, 1012 (1967).
21. Б. А. Трубников. Сб. «Вопросы теории плазмы», вып. 1. М., Госатом-

издат, 1963, стр. 98.

22. Ф. Б. Вурзель, Л. С. Полак, В. С. Щипачев. Химия высоких энергий,
1, №3, 268 (1967).

23. Г. В. Гуляев, Л. С. Полак. Сб. «Кинетика и термодинамика химических

реакций в низкотемпературной плазме». М., «Наука», 1965.
24. Е. Е. Никитин. Современные теории термического распада и

изомеризации молекул в газовой фазе. М., «Наука», 1964.
25. Е.В. Ступоченко, А. И. Осипов. Теоретическая и экспериментальная

химия, 3, 76 (1967).
26. С. А. Лосев, Н. А. Генералов. Докл. АН СССР, 141, 1072 (1961).
27. М. Сатас,А. Vaughan. J. Chem. Phys., 34, 460 (1961).
28. К. L. Wray. J. Chem. Phys., 37, 1254 (1962).
29. А. И. Осипов. Теорет. и эксперим. химия, 2, 649 (1966).
30. С. A. Brau, J. С. Keck, G. F. Carrier. Phys. Fluids, 9, 1885 (1966).
31. /. С. Keck, G. F. Carrier. J. Chem. Phys., 43, 2284 (1965).
32. R. Herman, К. Е. Shuler. J. Chem. Phys., 21, 373 (1953).
33. А. И. Осипов. Вестн. МГУ, серия III, № 4, 97 (1958).
34. M. Camac. J. Chem. Phys., 34, 448 (1961).



ПРИЛОЖЕНИЯ

1. МОДЕЛИРОВАНИЕ ВЫСОКОТЕМПЕРАТУРНОГО ПРОЦЕССА
ПОЛУЧЕНИЯ АЦЕТИЛЕНА ИЗ МЕТАНА

НА ЭЛЕКТРОННОЙ АНАЛОГОВОЙ ВЫЧИСЛИТЕЛЬНОЙ МАШИН К

В работе [1] и в главе I настоящей книги (стр. 52) описано

исследование на ЭВМ высокотемпературного процесса получения
ацетилена из метана.

В данной работе изучается возможность применения

электронных аналоговых вычислительных машин (ЭАВМ) для

исследования различных режимов протекания высокотемпературного про
-

цесса конверсии метана в ацетилен и закалки ацетилена.

Предполагается, что этот процесс описывается, так же как и в работа
[1], системой обыкновенных нелинейных дифференциальных урав
нений химической кинетики и гидродинамики.

Решение задач на ЭАВМ основано на аналогии

математического описания электрической модели и исследуемой системы

[2—5]. Переменные на ЭАВМ отображаются в определенном
масштабе электрическими величинами, что обеспечивает простоту
варьирования параметров и измерения переменных (электронные
индикаторы и цифровые вольтметры, стрелочные и другие

регистрирующие приборы). Все математические операции на ЭАВМ
выполняются соответствующими решающими элементами

одновременно. Это обеспечивает быстроту решения, которое может быть

получено либо в натуральном, либо в искусственно выбранном
масштабе времени.

Преимуществом ЭАВМ по сравнению с ЭВМ при решении
системы обыкновенных дифференциальных уравнений в случае,

когда необходимая точность решения не выходит за пределы
возможностей аналоговых машин и когда не возникает существенных

осложнений в методике реализации этих уравнений на аналоговых

машинах, является простота и быстрота интегрирования
изучаемой системы уравнений, а также наглядность получаемых

результатов. Основными недостатками ЭАВМ по сравнению с ЭВМ

являются отсутствие универсальности (основная область

применения ЭАВМ — решение обыкновенных дифференциальных
уравнений), пониженная точность решений (до нескольких процентов),
а также сложность исследования систем обыкновенных

нелинейных дифференциальных уравнений, которые содержат величины,

отличающиеся или изменяющиеся в ходе процесса более чем в

104 раз. Поэтому обычно на ЭАВМ исследуют химические

процессы, уравнения которых не содержат величин, изменяю-
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шихся в диапазоне, превышающем четыре десятичных порядка

(О—10].
Что касается второго отмеченного недостатка ЭАВМ, то он

оказывается несущественным, например, при исследовании
многих инженерных вопросов, когда исходные данные задаются с

относительно небольшой точностью; этот недостаток ЭАВМ также

пе играет большой роли при предварительном исследовании на

ЭАВМ математической модели объекта с последующим
уточнением (когда это важно) наиболее интересных результатов путем
расчета на ЭВМ.

Что же касается трудностей применения ЭАВМ в случаях,
когда входящие в дифференциальные уравнения величины

отличаются более чем в 104 раз, то в настоящей работе показано, как

можно преодолеть это препятствие.

Постановка задачи. В качестве исходного

математического описания изучаемого процесса била выбрана система

уравнений (36), приведенная на стр. 53 настоящей книги. При
этом в качестве независимой переменной \ добно выбрать время
t, связанное с переменой z, фигурирующей в уравнениях (36)
простым соотношением dt/dz = l/v (z). Осуществляя, согласно

этому уравнению, замену переменной z на t, исключаем из системы

уравнений (36) переменную v (z). Проведенные оценки слагаемых

5 5

и (z) RT (z) 25 (*) / И; и v (z) R 2 Ф) V4
i=i i=i

показали, что в рассматриваемом диапазоне температур (1000—
3500° К) указанные члены пренебрежимо малы (порядка 10~3—
10~4) по сравнению со слагаемыми, входящими соответственно

в числитель и знаменатель шестого уравнения системы (36).
Поэтому становится возможным сокращение числителя и

знаменателя этого уравнения на общий множитель [N/M — 2v (z)].
Нелинейные зависимости энтальпии hj от Т в этом уравнении могут

8

быть приближенно представлены в виде суммы hj = 2 ^ln^% + Afy
г=—l

с табулированными коэффициентами [11]. Анализ нелинейных
зависимостей hj (T) по табличным данным [11], проведенный в

диапазоне температур 1000—3500° К, позволил провести кусочно-

линейную аппроксимацию с приемлемой для данных расчетов

точностью (~ 1%)

hj (Т) = ajT 4- bj, (1)

где a,j, bj — коэффициенты линейной аппроксимации.

Введенные замены и упрощения позволили вместо системы

уравнений (36) (см. гл. I, стр. 53) получить следующую систему
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уравнений, описывающую плазмохимический процесс
образования ацетилена из метана:

^ = -МГК(0. (2)

= g k2 (T) c.2(t) - к3 (Т) с, (0, (4)

g (5)

d*
"

.^ dt

5

<М?> (дд-г + м

—— f ^ (Г), (7)

где clf с2, с3, с4, с5 — соответственно весовые концентрации

СН4, С2Н4, С2Н2, С, Н2, a fx£ (г = 1-ь5) — их молекулярные веса;
А (Т) — скорость изменения температуры, характеризующая
действие внешних отрицательных (положительных) источников тепла.

Уравнение (6) отличается от соответствующего уравнения

системы (36), так как было использовано уравнение материального
баланса

Нелинейные зависимости констант скоростей от температуры

&! (Г), к2 (Т) и к3 (Т) в уравнениях (2)— (5) задавались следующими
аналитическими выражениями

(8)

(— EJRT)\
Л, (Г) =k02exp(—E2/RT)

ks(T) = k0Sexp(—Es/RT)

где Ег = 91 ккал/молъ, Е2 = 40 ккал/молъ, Е3 = 30 ккал/молъ;

к01 =г 4,5.1013 сек'*, &02 = 2,57.10^ сек~\ ков = 1,7.106 сел"1.

Методика решения задачи на ЭАВМ.
Блок-схема моделирования системы, описываемой

уравнениями (2) — (7), приведена на рис. 84. Блок электронной

234



§ §
IS

II

Be

ft I I

Н о

i a ^

-• f I

I I !



следящей системы (рис. 84, ж) дает возможность одновременного

умножения пяти переменных (хг) на шестую (i/), а в случае
необходимости деления каждого из полученных произведений — на

седьмую переменную (z). Кроме того, на рис. 84 приняты

следующие обозначения:

3=1
6

Схемы реализации различных режимов закалки, задаваемых
зависимостью А (Т) в уравнении (7), показаны на рис. 85, а, б.

Все переменные в машине отображаются напряжениями
постоянного тока.

Рис. 85. Схема реализации
закалки

а — линейная, б — квадратичная

зависимость (см. стр. 243).

Учитывая, что операционные усилители ЭАВМ обеспечивают
линейность характеристики лишь в диапазоне изменения

напряжения + 100 в, необходимо, чтобы напряжения,
пропорциональные переменным системы, их производным или любой

комбинации переменных, не превышали этой максимально допустимой
величины. Кроме того, ни одно из напряжений не должно

изменяться с частотой, превышающей допустимое значение для полосы

пропускания вычислительных элементов и регистрирующих

устройств. С другой стороны, напряжения не должны быть

настолько малы ( ~ 10"1 в), чтобы стали соизмеримы с

погрешностями машины.

Указанные выше положения учитываются при выборе
соответствующих масштабов для искомых переменных и времени.
Соотношение между действительным значением переменной xt и

машинной переменной U^ определяется как

Ux. = XiMSi, (9)

где Ж^. — масштаб переменной хг.
Масштабы выбираются исходя из максимальных значений

переменных и рассчитываются (в вольтах на единицу) по следую-
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щим формулам:

М

Мя.х.= , ч ,
. . (11)

J ^г/max rj'max

Масштаб времени определяется по формуле

М% = j^ , (12)

где tw — время моделирования на ЭАВМ процесса, длительность

которого £н-

Спецификой плазмохимического процесса являются

большие скорости протекания химических реакций и большие

перепады температуры. В связи с этим коэффициенты kt (T) и

производные концентраций Cj изменяются в очень широком диапазоне

(до 14 порядков), что создает дополнительные трудности для
изучения этого процесса на ЭАВМ. Ввиду этого моделирование
задачи было проведено путем разбиения всего времени процесса на

участки. Величина каждого участка определялась так, чтобы
в его пределах константы скоростей kt (T) изменялись на два

порядка за счет соответствующего изменения температуры Т.

Таким образом, нелинейные зависимости kt (T) задавались с

переменными от участка к участку масштабами.

С масштабами, меняющимися от одного временного участка
к другому, моделировались величины производных концентраций

и температуры по времени (с;-, Т). При переходе от участка к

участку конечные значения переменных (температуры Т и

концентраций веществ Cj) для предыдущего участка являлись начальными

значениями этих переменных для последующего (участка). Это
обстоятельство, а также и то, что диапазон изменения

концентраций в весовых долях лежал в пределах 0—1, а температуры в

пределах 1000—3500° К, дает возможность отображать эти

переменные (в отличие от производных Cj и Т) на всех участках в

единых масштабах.
В данной работе исследование проводилось раздельно по

участкам. В случае необходимости возможно автоматическое

сочленение участков с помощью релейной схемы. Изменение масштабов
по всем производным и нелинейным зависимостям с сохранением
масштабов по всем переменным при переходе от участка к

участку осуществляется переключением контактов реле заранее

настроенных потенциометров, реализующих коэффициенты
передачи операционных блоков. Поэтохму в момент перехода от участка

к участку изменяются скачком лишь кх (Г), Cj и Т.
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Расчет коэффициентов усиления К суммирующих усилителей
и постоянных времени интегрирующих блоков (RC) производится
по следующим формулам:

К =

л/,
вх

(13)

где Мвх — масштаб величины, поступающей на данный вход
блока; МВых — масштаб величины, получаемой на выходе блока;
<х — численное значение коэффициента при данной переменной
в уравнении, разрешенном относительно старшей производной.

Реализация нелинейных зависимостей kt (T) на ЭАВМ
может быть осуществлена с помощью диодных блоков нелинейности
на основе кусочно-линейной аппроксимации или путем
интегрирования вспомогательных дифференциальных уравнений.

В первом случае рассчитываются зависимости (8) в диапазоне

изменения температуры в реакторе 1000—3500° К. Далее
производится разбиение на участки таким образом, чтобы изменение
констант скоростей кг (T) внутри участка не превышало двух
порядков. В соответствии с выбранными границами по kt (T)
находились границы изменения температуры для данного участка

где Tni и Tfi соответственно температуры начала и конца /-го

участка разбиения. На нелинейных блоках настраиваются

зависимости кг (Tfi + Тг) для данного участка, где переменная

При изменении температуры Тг от значения Tni до Tfi переменная
Tt изменяется от Tni — Тц до нуля. Схема получения к (Тц +
+Гр с помощью нелинейных блоков приведена на рис. 84

пунктиром.

Однако этот метод реализации кх (Т) является нерациональным

из-за необходимости использования большого числа

нелинейных блоков (либо перестройки их при переходе от участка к

участку), а также из-за понижения точности задания kt (T) в связи

с кусочно-линейной аппроксимацией. Поэтому целесообразнее
реализовывать нелинейную зависимость kt (T) путем
интегрирования вспомогательных дифференциальных уравнений.

Вспомогательные уравнения для реализации kt (T)
получаются посредством дифференцирования по времени исходных

уравнений (8)
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гр t

где i = 1, 2, 3: Pi =-

-g- > схема решения которых приведена на

рис. 86.

Напряжения, отображающие производные kt (T) по времени,
были получены на блоке электронной следящей системы С

умножением соответствующей функции kt (T) на Гс одновременным
делением каждого из произведений на Г2. Напряжение,
отображающее Т2, было получено с помощью блока произведения,

Рис. 86. Схема реализации кц (Т)

на который в'качестве сомножителей было подано напряжение,

отображающее температуру Т, получаемую как решение уравнений
(2) — (7). С помощью интегрирующих усилителей 1, 2 и 3 были

получены напряжения, отображающие зависимости kt (T).
Постоянные времени интегрирующих усилителей рассчитывались
по формуле

MaM
(15)

где а =

Приведенная методика решения системы дифференциальных
уравнений (2) — (7) и (14) позволила провести исследование

процесса конверсии метана в ацетилен на ВЦ МЭИ с помощью ЭАВМ
типа МН-14 по схеме рис. 84 при замене схемы реализации
зависимостей kt (71), представленной пунктиром, схемой рис. 86.

Результаты решения в виде cj (t) и Т (t) записывались с помощью

двухкоординатного регистрирующего прибора ДРП-2.
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Результаты решения системы

ний (2) — (7) без учета закалки

у р а в н е-

На первом этапе исследования определялось влияние

начальных концентраций метана с± (0) и водорода сь (0) при различных
начальных температурах Т (0) в отсутствие закалки [А (Т) ~ 0

в уравнении (7)]. Были рассмотрены варианты, перечисленные
в табл. 1.

Таблица 1

Варианты решения системы уравнений (2) — (7)

Начальные

параметры

Т(0), °К

ci(0), вес. доли

с5 (0), вес. доли

Номер варианта

1

3500

0,9

0,1

2

3500 .

0,95

0,05

3

3500

0,99

0,01

4

3150

0,9

од

5

3150

0,95

0,05

6

3150

0,99

0,01

7

2800

0,9

0,1

8

2800

0,95

0,05

9

2800

0,99

0,01

Для всех вариантов начальные значения с2 (0) = с3 (0) =
= с4 (0) = 0. Для иллюстрации полученных на ЭАВМ
результатов на рис. 87 приведены зависимости концентраций метана,

ацетилена и углерода от времени для некоторых из изученных

вариантов.

Обработка результатов дала возможность построить

зависимости s [сг (0)], тт [с^ (0)],с3т [сх (0)] при фиксированной
начальной температуре Т (0) и s [Т (0)], тт [Т (0)],73т [Т (0)] при

фиксированной начальной концентрации метана ^ (0). Здесь

S =

l (0)

тт — время, при котором концентрация ацетилена съ достигает

максимального значения съ ; сх
— концентрация метана в

момент времени тт.
Указанные зависимости приведены соответственно на рис. 88

и 89. Из рис.88 видно, как и следовало ожидать, что с ростом
начальной температуры Т (0) максимальная концентрация ацетилена и

степень конверсии метана возрастают, тогда как время достижения

максимальной концентрации ацетилена падает. Из рис. 89 следует,
что с ростом начальной концентрации метана максимальная

концентрация ацетилена и степень конверсии метана медленно

убывают, а время достижения максимальной концентрации

ацетилена возрастает.
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Рис. 87. Зависимость концентраций ацетилена (1—3), углерода (4—6)
и метана (7—9) от времени при начальной температуре 3500сК и различных
начальных концентрациях метана

/, 4, i/—0,9 пес. долей; 2, 5, 5—0,95 вес. долей; з, 6, 7—0,99 вес. долей

Возрастание начальной концентрации метана при постоянной

температуре приводит к уменьшению теплосодержания
плазменной струи, чем и объясняется вид кривых на рис. 89.

Моделирование различных режимов
закалки

Одной из основных стадий плазмохимического процесса
является закалка целевых продуктов (в рассматриваемом случае

ацетилена [12]). Лишь в некоторых случаях удается построить

физические модели процесса закалки, отражающие ее основные

черты [13]. На основании таких моделей можно получить

зависимость скорости понижения температуры от параметров,

характеризующих плазменную струю и метод закалки. Задача состоит

в отыскании закона закалки [А (Т)].
В связи с этим для приближенного математического описания

процесса закалки можно воспользоваться уравнениями (2) — (7),
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Рис. 88. Зависимость величин

73т (1-3), s (4-6) и тт (7-9)
от начальной температуры при
различных начальных

концентрациях метана
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Рис. 89. Зависимость величин

73т(1-3), s(4-6) и тт (7-9)
от начальной концентрации
метана при различных

начальных температурах

7, 4, 9—3500°; 2, 5, 5—3150°; 3, 6,

7 — 2800°К



в которых величина А (Т) аппроксимируется следующими
относительно простыми функциями [14]:

\ 0 при Т<Т,.

n ; 1 0 при Г<Г/.

Здесь <zi, a2
— постоянные величины, являющиеся параметрами

закалки; Tf — температура, до которой следует производить

закалку (выбирается из условия, чтобы время разложения целевых
продуктов при этой температуре сушественно превышало время,
необходимое для дальнейшего охлаждения плазменной струи
после выхода из закалочного устройства).

Кроме упомянутых выше двух законов закалки (16) и (17),
рассматриваются два предельных случая скорости понижения

температуры [12, 14]:

т т>

т (Т) (18)
О при Г<7у

| а0 — const при Т > Tf,
АЛТ) = \ q при г<7у

Здесь а3
— постоянная величина; т (Т) — , (Т—время

релаксации по отношению к разложению ацетилена.
Закон закалки (18) позволяет оценить ее результаты при

максимальной допустимой скорости ее смягчения, в то время как

закон (19), наоборот, позволяет оценить результаты закалки при

отсутствии смягчения ее режима. В работах [12, 14] исходя из

математической модели, принятой на основании [1, 12], с помощью

ЭВМ были исследованы законы закалки (16) — (19) при
различных значениях параметров Ао, ац а2» а3 ПРИ °ДН0М и том же вРе~

мени включения закалки. В настоящей работе при математическом
описании процесса (2—7) с помощью аналоговых вычислительных

машин эти же законы закалки изучены для более широкого
диапазона изменения параметров AQ, cti, a2)a3 Для различных
моментов ее включения. Такое исследование позволяет оценить влияние

различных времен включения закалки при различных законах

понижения температуры для определенных диапазонов изменения

параметров AQ, cti, а2» сс3- Для эт°й цели решались уравнения

(2) — (7) при следующих начальных условиях: Т (0) = 3500° К;

сг (0) = 0,9; <Гб (0) = 0,1 вес. доли.

Результаты этой работы представлены на рис. 90, 91 и 92.
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На рис. 90 приведены зависимости концентраций ацетилена и

углерода, сохранившихся после закалки при законах (16) и (19)
от начальной скорости закалки (А0) для различных времен ее

включения.

Из этих графиков видно, что постепенное увеличение Ао
при различных моментах включения закалки для каждого из

законов (16) и (19) может приводить к качественно различным

результатам. Если закалка при законе Л4 включается слишком рано

£вчл =s 1,35-ГЭ"4 сек) пэ огязшз нию к моменту образования
(максимума ацетилена без закалки (тт = 4,65 ЛО"4 сек), то

сохраненная концентрация ацетилена падает с ростом Ао; при этом

падает и концентрация углерода. Подобное поведение

концентрации ацетилена можно объяснить тем, что слишком раннее вклю-

Ц вес доли

0,55-

0,50

, вес доли

0,15

-0,10

\ 7

510" Ю7

Ао, град/сен

Рис. 90. Зависимость концентраций
ацетилена 7* (1—6) и углерода 1*

(7—12) от скорости закалки (Ао) при
начальных условиях Т (0) —3500°К

ис7(0) = 0,9 вес. доли

Сплошные линии — результаты при

постоянном законе закалки; пунктирные
— при линейном законе; 5, 6, и, 12 —

время включения закалки ^вкл
= 1,35-10—*

сек; 2, 3, 9, 10— *вкл = 2,85-10-4се?;;

2,4, 7,8—*вкл = 4,35 • Ю-4 сек

0,55

0,50

0,20

0,15

-0,10

0,05

Чес доли

/

\
\

\5

s

1,35 2,85 4,35

Рис. 91. Зависимости концентраций

ацетилена~с*(^—б) и углерода 7* (7—
И) от времени включения закалки

и при Т (0) = 3500° К и Тх (0) =0,9
вес. долей
Сплошные линии — постоянный закон за-

калки, пунктирные — линейный. 4, 6, 7,

8— Ао = 10е град/сек; 2, о, 9, Ю—

Ао = 3 '10е град/сек; 1, 3, 11 — Ао =

= 107 град/сек
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Рис. 92. Зависимость Ат от

начальной скорости закалки (Ао) при
^вкл= 4,35 . 10"4 сек, Т (0)=3500°К,

«Г(0) — °'9 вес- Долей
1 — при линейном законе закалки, 2 — при

законе (19)

ю1

Ао, град/сек

чение достаточно интенсивной закалки приводит к столь быстрому
понижению температуры, что замедляется как процесс
превращения этилена в ацетилен, так и образование углерода.

Сравнение результатов закалки с постоянной скоростью
охлаждения (19) для различных значений параметра Ао
показывает, что при времени включения закалки £Вкл =

=4,35-10~4 сек концентрация сохранившегося ацетилена с

увеличением Ао растет быстрее, чем при времени включения

£вкл = 2,85* 10~4 сек. Это объясняется тем, что теперь закалка в

меньшей мере препятствует разложению этилена и, следовательно,

образованию ацетилена, но в то же время сохраняется в

значительной мере образовавшийся ацетилен. При этом образуется
несколько больше углерода, так как в этом случае он в большем
количестве успевает образоваться до закалки.

На рис. 91 представлены зависимости концентраций
сохраненного ацетилена (с*3) и углерода (с*4) от времени включения при

различных значениях Ао для закона закалки (19). Из этого

рисунка видно, что для малой постоянной скорости понижения

температуры при закалке (-40 = 106 град/сек) кривая зависимости

сохраненной концентрации ацетилена от момента включения

закалки носит немонотонный характер, достигая максимума в

промежутке 1,35.10~4 <£Вкл <4,35.10"4 сек.

При больших Ло концентрация сохраненного ацетилена
монотонно возрастает с приближением момента включения закалки

(слева) к моменту тт, а концентрация сохраненного углерода при
этом возрастает с ростом £Вкл Для всех Ао.

Из рис. 90 и 91 видно, что линейный закон закалки (16)
приводит к аналогичным зависимостям, вызывая лишь некоторые
количественные изменения по сравнению с законом (19), которые
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обусловлены смягчением режима закалки. Влияние начальной

скорости закалки (AQ) на длительность охлаждения плазменной

струи до температуры 1200° К (Дт) показано на рис. 92.
Как и следовало ожидать, для постоянного закона закалки

кривая лежит ниже, чем кривая, соответствующая линейному закону.
При этом наибольшее расхождение между кривыми достигается
при минимальном значении Ао = 106 град/сек. При больших
значениях Ао ^ 107 град/сек эти различия несущественны.

Результаты расчета показали, что при значениях Ас\ ^
<^ 105 град/сек закалка практически не обеспечивается. Таким

образом, проведенные расчеты позволили оценить интервал значений

для нижней границы допустимых начальных скоростей Ао
понижения температуры при закалке. Не приведенные здесь
результаты рассмотрения квадратичного закона закалки (17)
существенно не отличаются от показанных на рис. 90 и 91 данных для
линейного закона закалки (16). Как и следовало ожидать, худшие

результаты при прочих равных условиях дает закон закалки (18).
Таким образом, разработана методика моделирования

на ЭАВМ стационарного плазмохимического процесса.
Предлагаемая методика позволила преодолеть трудности, связанные

с большим диапазоном изменения величин, входящих в

уравнения (2) — (7) (диапазон составляет 1014). Эта методика

моделирования с разбиением на участки не претендует на оптимальность.

Более того, сейчас уже видны пути ее улучшения (автоматизация
перехода от участка к участку с помощью дополнительных

релейных схем и т. п.), что может привести к сокращению времени

решения и увеличению его точности. Полученные результаты

указывают пути оптимизации закалки, но задача требует более
точного количественного решения. Применение разработанной
выше методики, как легко видеть, отнюдь не ограничивается

рассмотренной конкретной задачей.
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2. ВЫЧИСЛЕНИЕ ВЕРОЯТНОСТЕЙ ПЕРЕХОДОВ
ПО ДАННЫМ О РЕЛАКСАЦИИ ЗАСЕЛЕННОСТЕЙ
КВАНТОВЫХ УРОВНЕЙ

При решении многих физических и физико-химических
задач, связанных с рассмотрением неравновесной плазмы,
существенного результата можно достигнуть лишь на основе знания

кинетики заселенностей дискретных уровней молекул, атомов

и ионов. Для расчета релаксации заселенностей необходимо
задать или найти по каким-либо теоретическим формулам
вероятности всех существенных элементарных процессов, протекающих
в неравновесной плазме. Отсутствие надежных данных о

вероятностях таких процессов, как межатомные или атомно-ионные

столкновения и другие, ограничивает круг решаемых задач

рассмотрением плазмы простого химического состава и простейшими
схемами неравновесности [1].

Расчету вероятностей переходов, описывающих неупругие

столкновения, посвящено значительное число работ, в то время
как экспериментальные данные весьма ограничены [2].
Большинство экспериментов, посвященных изучению передачи
вращательной и колебательной энергии при столкновениях частиц

[3], дают возможность рассчитать лишь усредненные времена

релаксации, из которых, за исключением простых случаев, нельзя

получить вероятности переходов между отдельными
энергетическими уровнями. Более перспективны в этом отношении

эксперименты, основанные на спектральном наблюдении релаксирую-
щих систем во времени [2, 4, 5]. Получаемые в этих опытах

данные по кинетике заселенностей отдельных дискретных уровней

служат основой для количественного расчета вероятностей

переходов [5, 6]. Математически задача сводится к решению
системы линейных алгебраических уравнений, для чего численно или

графически находятся скорости изменения заселенностей отдельных

уровней. Трудности, связанные с таким подходом, рассмотрены

в статье Каррингтона [6] и обсуждаются также в работе [2]«.
В настоящей работе рассматривается возможность решения

задачи, поставленной в работе [6], методом максимума

правдоподобия [7]. Применение метода иллюстрируется нами на

гипотетическом примере расчета релаксации модельной газовой си-
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стемы, аналогичной рассмотренной Монтроллом и Шулером при
исследовании термической диссоциации молекул [8]. Моделью

служит замкнутая двухкомпонентная система в газовой фазе,
содержащая малую концентрацию активной двухатомной
компоненты и значительный избыток молекул инертного газа, причем
вся система находится в тепловом равновесии при температуре Т.

Далее за счет кратковременного облучения газа интенсивным

пучком света в области частот, соответствующих переходам в

спектре активной компоненты, последняя испытывает некоторое
отклонение от своего равновесного состояния. После прекращения

возмущения газ релаксирует к новому равновесному состоянию.

Помещение активных молекул в большой термостат рассчитано
на то, что молекулы последнего будут сохранять свое начальное

больцмановское распределение в течение всего процесса
релаксации, так как вследствие малости концентрации любое изменение

энергии активных молекул не будет влиять на температуру
термостата. Задача упрощается также и в математическом

отношении, поскольку уравнения, описывающие зависимости заселен-

ностей квантовых уровней от времени, становятся линейными
относительно величин заселенностей. Сразу же подчеркнем, что

в рассматриваемой задаче нас не будет интересовать характер

возбуждения, хотя численные значения используемых нами

вероятностей переходов относятся к вращательной релаксации радикала
ОН [6]. Это позволит нам решать задачу в более общей
постановке. Будем описывать распределение заселенностей по п

возможным молекулярным квантовым состояниям вектором х, элементы

которого хг представляют собой долю молекул в состоянии i.

В принятых условиях скорость релаксации к равновесному

распределению хе будет описываться уравнением [8]

^г)' (1)

где wtj
— вероятность того, что в единицу времени молекула

перейдет из состояния / в состояние i.

Вероятности переходов зависят от природы молекул
термостата и его температуры и связаны между собой, согласно

принципу детального равновесия

wtff. = wHxe.. (2)

Введем обозначение

к

и запишем уравнение (1) в матричном виде

dx(t)
dt
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Формальным решением уравнения (3) является

х(*)=ехр(Л*)ж(0), (4)
где матрицу С (t) == exp (At), согласно [8], можно записать в виде

С (0 = (ЛГ )1/2Техр (Л*) Т (Xeff\ (5)

где Л — диагональная матрица, элементы которой представляют
собой собственные значения матрицы А я В = (Xе)-1/* А (Xе)1/2;
Т — ортогональная матрица, столбы которой являются

собственными векторами В; Xе — диагональная матрица, элементы

которой суть компоненты вектора равновесного распределения Xе;
штрих означает транспонирование.

Таким образом, задаваясь начальным распределением х (0)
и вероятностями переходов юг^ по формулам (4) и (5) можно
рассчитать заселенности всех уровней в любой момент времени.

Решение обратной задачи, т. е. вычисление величин wtj по известным

х (t), более сложно. Трудность определения w зависит как от

предварительного знания диапазона возможных значений

вероятностей, так и от выбора времени измерения х (t) и ошибки
определения заселенностей.

Наилучшими оценками величин w, согласно принципа
максимального правдоподобия [7], будут такие оценки, которые

обеспечивают наибольшую вероятность получить в результате
подстановки условий эксперимента в уравнение (4) именно те значения

заселенностей, которые и были фактически найдены на опыте.

Максимуму правдоподобия в случае гауссовского распределения
ошибок определения х (t) будет соответствовать минимум суммы

квадратов отклонений заселенностей, вычисляемых по формуле
(4), от найденных экспериментально.

В общем случае может оказаться, что сравнительно большое
изменение численных значений некоторых вероятностей переходов
будет мало сказываться на вычисляемых величинах заселенностей

[6]. Поэтому для определения w наиболее целесообразно
воспользоваться методом оврагов (см. стр. 101).

Для иллюстрации методики расчетов мы использовали пример,

разобранный в статье Каррингтона [6]. Вероятности переходов

задаются соотношением

wuj = 0 для |г — /|>1.
В целях экономии машинного времени предполагается, что

система описывается шестью дискретными уровнями энергии

(равновесной заселенностью более высоких уровней можно

пренебречь). Численные значения w характеризуют вращательную

релаксацию радикала ОН в термостате инертного газа с

температурой 144° К [6]. Данные табл. 2 рассчитаны по этим значениям.
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Таблица 2

Матрица вероятностей переходов
*
и равновесное распределение

заселенностей

—0

0
,6419

,6419

0

—1

0

,4500

,3648

,9148

0,-9000

—1,6340

0,7340

1

-1

0

,3500

,9719

,6219

1

—2

0

,8000

,3216

,5216

2

-2
,2500

,2500

Xе

0,20000

0,28528

0,28998

0,15768

0,05448

0,01263
* Элементы матрицы А умножены на минимально возможное время наблюдения т„.

Расчет релаксации системы с начальным распределением
х (0) = [0, 0, 0, 0, 1, 0], проведенный нами на ЭВМ типаМ -20, дал
близкие к опубликованным в работе [6] результаты *. К
величинам х (т0), х (2т0) и х (4т0) добавляли отклонения, распределенные
по нормальному закону, характеризующемуся нулевым средним
и 5%-ной ошибкой. Получаемые таким образом значения

рассматривались как опытные. Далее из разных начальных точек в

которых w отличались от принятых значений, проводили методом
оврагов поиск наиболее вероятных значений w. В данном случае
необходимо было определить пять величин w, так как остальные

пять находятся из соотношения (2). Неизвестными считали над-

диагональные элементы матрицы А. Для начала поиска

необходимо задать какие-либо численные значения ц>, причем чем

сильнее они будут отличаться от истинных значений, тем дольше

будет идти их машинный поиск. Для сравнения мы начинали расчет
методом оврагов из начальных точек, в которых все w отличались

от известных значений на 20% и 100% (один из оврагов показан

на рис. 93). В первом случае на решение задачи затрачено около

15 мин машинного времени, во втором
— около 60 мин. В обоих

случаях были получены близкие к истинным значения

вероятностей переходов (табл. 3) и хорошее описание эксперимента
(рис. 94). Была также проведена обработка результатов, в которые
вносили не 5%-, а 10%-ную ошибку. Время вычислений при этом

практически не изменилось, а значения искомых параметров
несколько ухудшились.

* Небольшое расхождение было обусловлено, по-видимому, разными
методами определения собственных значений матрицы А, которые в нашем

случае находились методом наискорейшего спуска [9].
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Рйс. 93. Графическое изображение

метода оврагов в координатах

w01 — w±o

ЦифрьГу [точек локальных градиентных

спусков представляют сумму квадратов

отклонений, увеличенную в 10* раз

Рис. 94. Релаксация заселенностей

xi после начального возбуждения
уровня i = 4 в разные моменты
времени

1 — t = 0; 2 — t = т0; з — t = 2т0; 4 —

* = 4т0; 5 — i = оэ.

Сплошные кривые — расчет на ЭВМ;

точки — «экспериментальные» данные

Обработка «экспериментальных» данных, полученных
аналогичным образом для начального возбуждения каждого из остальных

уровней (i = 0, 1, 2, 3, 5), показала, что отдельные вероятности

переходов определяются в разных случаях неодинаково точно.

Это объясняется разной степенью влияния величин w на

рассчитываемые значения заселенностей в экспериментах с различным

начальным возбуждением. Естественно, что для определения

Таблица 3

Истинные значения вероятностей переходов
их расчетов методом оврагов

и результаты

Истинное

значение

0,45
0,90
1,35
1,80
2,25

Значения, найденные из разных начальных
приближений

20%-ное отклонение
и 5%-ная ошибка

0,48
0,87
1,34
1,78
2,43

20%-ное отклонение

и 10%-ная ошибка

0,49

0,86

1,29

1,81

3,06

100%-ние
отклонение и 5%-ная

ошибка

0,49

0,88
1,33
1,78
3,15
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Таблица 4

Максимальные абсолютные значения производных

начальных распределений

для различных

1

Wo

W\

W<2,

W3

wt

2

3

4

5

0

0,521
0,071
0,017
0,004
0,001

1

0,234
0,123
0,029
0,005
0,001

Исходные .

0,122
0,111
0,142
0,010
0,001

тселенные уровни

3

0,097
0,080
0,105
0,013
0,003

4

0,092
0,068
0,093
0,094
0,006

5

0,084

0,061
0,080
0,098

0,082

вероятностей переходов следует использовать те данные по засе-

ленностям, которым соответствуют наибольшие по абсолютной
величине производные дх^дю^, характеризующие влияние w^
на xt. Обработка таких данных должна привести к наиболее
точным значениям параметров. Процедура расчетов следующая.

Для каждого определяемого параметра находятся условия

экспериментов, в которых наиболее сильно проявляется его

влияние. Далее обрабатываются данные опытов, наиболее характерные

для одного из параметров (или группы), причем остальные

поддерживаются на некотором заданном уровне. Затем переходят к

обработке следующей серии опытов, в которых уточняется вторая

группа параметров и т. д. После нескольких циклов удается

получить довольно точные, самосогласованные значения констант

[10]. В табл. 4 приведена исходная информация, необходимая для

обработки данных в рассматриваемой нами задаче.

Из табл. 4 следует, что для определения w01 наиболее

благоприятно исходное распределение, в котором заселенными являются

уровни 0 или 1, для определения w± 2— уровни 1 или 2, для w2 3—
3 или 4, для w3 4

— 4 или 5 и для w± 5
— уровень 5.

Для проведения самосогласования параметров w в качестве

начальных были взяты вероятности переходов, отличавшиеся на

20—50% от истинных. Самосогласование достигнуто за два

цикла, причем окончательные значения параметров отличались от

истинных в среднем на 0,6%. Общее время обработки составило

10 мин. К недостаткам такого метода расчета следует отнести

необходимость сравнительно большого объема эксперимента. Далее,
при составлении таблиц, аналогичных табл. 4, нужно заранее
задаться некоторыми численными значениями вероятностей
переходов. Поэтому самосогласование параметров следует проводить

на второй стадии изучения системы, когда по тем или иным данным

252



методом оврагов уже найдены достаточно надежные значения

вероятностей переходов.
Планирование эксперимента с использованием ЭВМ для

расчета различных вариантов применимо не только для уточнения

параметров известной схемы переходов между энергетическими
уровнями, но и для решения вопроса о том, какая схема переходов
более вероятна. Пусть, например, на обсуждение выдвигаются две

разные схемы. Согласно одной из них, матрица вероятностей
переходов есть Аг, согласно другой — А2. Обработка имеющегося
опытного материала по уравнениям

х± (t) - exp (Ayt) х (0) (7)
и

х2 (t) = exp (A2t) x (0) (8)

не дает возможность отдать предпочтение какой-либо схеме

переходов. Требуется, зная Ах и А2, найти такое исходное
распределение х (0), для которого расчет по уравнениям (7) и (8) будет
приводить к возможно большим отклонениям. Статистическому
обоснованию такого подхода посвящена работа [11]*. В качестве

достаточного при нормальном распределении ошибок может быть

принято условие, чтобы величина

и = i^W-pW (9)

превысила 1,96 (— 5%-ный риск) или 2,6 (— 1%-ный риск).
В процессе расчетов методом оврагов мы нашли несколько

наборов вероятности переходов, одинаково хорошо согласующихся
с экспериментом. Далее мы сопоставили по формуле (9)
заселенности, вычисленные по одному из наборов w (wQ г

= 0,57; w1 2
=

= 0,83; w2 з= 1,35; w3 4= 1,87; w^ 5= 3,78) и по истинным

вероятностям переходов, взятым из табл. 3. Оказалось, что с риском,

не превышающим 5%, можно провести дискриминацию между

этими двумя наборами Аг и А2 для случая начальной заселенности

любого уровня, кроме уровня 4. При исходной заселенности

уровня i — 0 дискриминация проводится по разности в заселенностях

1- и 2-го уровней, при i = 1 — по разности в заселенностях 0- и

1-го уровней, при i = 2 л i = 3—2- и 5-го уровней, при i = 5— по

разности в заселенностях всех уровней, кроме уровня 4.

Характерно, что по данным о заселенности этого уровня нельзя провести

дискриминацию между Аг и А2 ни в одном случае исходного

распределения х(0). Если необходимо дискриминировать несколько

схем, то нужно пользоваться теорией информации [12]. Формулы
для вычислений при гауссовском распределении ошибок

получены Боксом и Хиллом [13].

* См. также стр. 127 настоящей книги.
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Таким образом, применение математической статистики в

сочетании с нелокальным методом поиска, разработанным Гельфан-
дом и Цетлиным, позволяет по имеющимся опытным данным о

кинетике релаксации исходного неравновесного распределения за-

селенностей квантовых уровней определить численные значения

вероятностей переходов и найти условия эксперимента, в которых

вероятности находятся с наименьшей возможной ошибкой. Для
установления наиболее вероятной схемы переходов и обеспечения

единственности набора параметров целесообразно сочетание

метода оврагов с оптимальным планированием эксперимента на ЭВМ.
Решение поставленной задачи было проведено нами на

модельной системе с целью экономии машинного времени за счет

ряда физических и математических упрощений. В связи с этим

мы хотели бы в заключение подчеркнуть методическую
направленность настоящей работы, в которой, как нам представляется,

отражены характерные ситуации, имеющие место в реальных

экспериментах с реальными системами.
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3. О ВОЗМОЖНОМ ПРИМЕНЕНИИ ПРОГРАММ РАСПОЗНАВАНИЯ

ДЛЯ РЕШЕНИЯ КИНЕТИЧЕСКИХ ЗАДАЧ

а. Проблема распознавания и основные

идеи ее решения

Уже многие годы ученые исследуют закономерности
деятельности человеческого мозга. Большое внимание в этих

исследованиях отводится моделированию отдельных свойств нервных
систем с помощью средств электроники. Все это привело к исполь-
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зованию ЭВМ для моделирования процессов обучения, адаптации,

распознавания и некоторых других процессов, присущих

человеческому мозгу.

Среди этих работ весьма плодотворными оказались работы по

моделированию процессов узнавания. Проблема эта заключается

в следующем.

Воспринимая картины внешнего мира, мы узнаем в нем

множество предметов: дома, птицы, деревья, стулья, буквы, знакомые

лица и многое другое. Эта способность позволяет нам правильно

оценивать обстановку и предпринимать соответствующие

целесообразные действия. Однако неясно, как в человеческом мозгу

происходит узнавание. Этот вопрос интересует как физиологов
и психологов, изучающих конструкцию и законы деятельности

мозга, так и инженеров и математиков, создающих машины, в той

или иной степени имитирующие умственную деятельность
человека.

Можно предположить, что человек запоминает все

встретившиеся ему изображения кошек, собак, птиц, деревьев и т. п. Увидев
новое изображение, он сравнивает его со всеми картинками,

имеющимися у него в памяти и в случае точного совпадения этой

картинки с картинкой под названием «кошка» говорит: «Это кошка!».

Однако такой метод узнавания в принципе не позволяет узнавать
новые экземпляры кошек, собак, птиц и т. д. Более того, человек

не смог бы узнать уже встречавшихся ему животных, если бы они

представали перед ним в новом ракурсе, или в ином освещении,
или на ином расстоянии. Ясно, что человек не запоминает все

виденные им изображения, а хранит лишь обобщенные признаки

кошек, собак, деревьев, позволяющие отнести вновь

встретившийся объект к классу кошек, собак или деревьев. Весьма важно то,
что никому в детстве не сообщают признаки в готовом виде, а

каждый ребенок сам находит их в процессе обучения на примерах.
Точно так же ребенок обучается азбуке. Учитель не объясняет

ученикам разницу между графической формой букв а и б, а просто

показывает: вот это буква а и это буква а, и это а, а это буква б

и это б и т. д. Очень скоро ребенок научается отличать эти буквы
и в дальнейшем почти безошибочно узнает их, даже если они

написаны незнакомым почерком, т. е. если точно таких букв он

прежде не видел.

На основании этих общих соображений перед машиной была

поставлена следующая задача. Пусть имеется некоторое

количество картинок, каждая из которых принадлежит к некоторому

классу. В простейшем случае таких классов два (рассмотрение
такого случая не является принципиальным ограничением). Такими

классами могут быть кошки и собаки, буквы а и б, треугольники
и квадраты и т. п. Необходимо, чтобы машина умела правильно

классифицировать эти картинки. Однако признаков, по которым

можно эту классификацию провести, машине не сообщают. Машина
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должна выработать эти признаки, после того как ей покажут

некоторое количество примеров из каждого класса (после обучения).
Оказалось, что решение этой задачи представляет не только

научный, но и практический интерес. Дело в том, что бурное
развитие вычислительной техники очень остро поставило проблему
общения человека с машиной, в частности, проблему ввода

информации. Очень часто оказывается, что процесс переноски данных из

таблиц на перфокарты или перфоленту занимает гораздо больше

времени, чем дальнейшая обработка данных на машине. Поэтому
возникла идея использовать для чтения данных сами машины.

Для этого необходимо, чтобы машина умела распознавать буквы
и цифры.

Первоначально эту задачу пытались решать в лоб. В память

машины закладывались образцы каждой из букв (цифр.)
Подлежащий распознаванию знак сравнивали с каждым образцом в

памяти машины и по совпадению с образцом опознавали букву или

цифру. Однако надежность такого распознавания оказалась

невелика. Машина хорошо различала стандартный шрифт, если знаки

были одного размера, хорошо центрированы, не имели наклона,

помарок, были полностью пропечатаны. Если же условия
отличались от идеальных (что неизбежно на практике), то машина

начинала часто ошибаться. Стало ясно, что машина для чтения текста

должна обладать большой гибкостью, и инженеры пошли по пути

создания машин, использующих не жестко заданные признаки, а

признаки, вырабатываемые самой машиной в процессе обучения.
Первым устройством для распознавания изображений,

действовавшим на основе обучения с помощью показов, был персеп-
трон Розенблата [1]. Устройство представляло модель нервной
сети, организация которой должна была в основных чертах

повторять организацию зрительного анализатора человека.

Действительно, персептрон после соответствующего обучения умел решать

некоторые задачи распознавания: отличать большие цифры от

маленьких, фигуры, расположенные в правой части поля, от фигур,
расположенных в левой части, и некоторые другие.
Математическое описание принципов работы персептрона было дано несколько

позднее [2]. В дальнейшем появились другие программы,

предназначенные для решения этой задачи, и число их растет с каждым

годом (список литературы по этому вопросу см. в работе [3]).
Наиболее целесообразно познакомиться с принципами

построения распознающих программ на примере алгоритма,

предложенного Браверманом [4], так как он допускает весьма

наглядную геометрическую интерпретацию.
Прежде всего необходимо показать, как воспринимает машина

зрительные образы. Черно-белое изображение проектируется на

растр, т.е. на поле, состоящее из (pq) фотоэлементов (или
фотосопротивлений). Если на фотоэлемент попадает светлый участок

изображения, то на выходе его возникает сигнал «1», если на фото-
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элемент попадает темный участок, то на выходе возникает сигнал

«О». Если просматривать фотоэлементы один за другим, ряд за

рядом и записывать их выходные сигналы, то каждое черно-белое
изображение будет преобразовано в последовательность нулей
и единиц

О, 1, 1, 0, 0, 0, 1, 0..., 0, 1, 0

(всего pq двоичных знаков), т. е. в тг-разрядный двоичный код.

Каждый такой ^-разрядный двоичный код можно

рассматривать как точку (или вектор) тг-мерного пространства. Таким

образом, каждому изображению, проектируемому на растр, будет
соответствовать определенная точка в этом тг-мерном пространстве.
Так как каждая из координат может принимать только два
значения (1 или 0), то каждому двоичному коду (каждому изображению)
будет соответствовать одна из вершин тг-мерного куба.

Работа программы распознавания, предложенной Браверма-
ном, основана на гипотезе, согласно которой точки,

принадлежащие изображениям различных классов (например, буквам а и б),
группируются в различных областях рассматриваемого гг-мерного

пространства, так что они могут быть разделены с помощью не

слишком сложной поверхности. Иначе говоря, с помощью этой

гипотезы утверждается соответствие понятий «сходства»

изображений и «близости» соответствующих им точек в гс-мерном

пространстве. А из этого и следует, что вполне очевидное

утверждение — «картинка из данного класса более похожа на картинки из

своего класса, чем на картинки из чужого»— должно означать

следующее: «точки, принадлежащие объектам одного класса,
расположены ближе друг к другу, чем к точкам другого класса». На

основе этой гипотезы был создан алгоритм процесса обучения
машины распознаванию изображений с помощью показов. Согласно

этому алгоритму, в процессе обучения в машину вводят некоторое
количество векторов из каждого класса, и машина проводит

поверхность, разделяющую точки, принадлежащие различным
классам. На этом процесс обучения заканчивается и машина готова

проводить узнавание новых объектов. Отнесение нового объекта

к тому или иному классу производится в зависимости от того, по

какую сторону от разделяющей поверхности, построенной в

результате обучения, попадает соответствующая точка.

С помощью этого алгоритма машину обучали различать цифры
и она после обучения различала их в 98 случаях из 100 (правда,
картинки эти были строго определенного размера). Однако можно

привести множество задач на распознавание, которые человек

решает с легкостью, а такого рода программе они не под силу.

Поэтому, несмотря на явные успехи, проблема далека от решения.
За последние годы был создан ряд обучающихся программ для

решения задач узнавания. Все они основывались на

предположении, что в исходном ^-мерном пространстве точки из различных
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классов могут быгь разделены. Различие этих программ в том, что

они использовали или различные классы разделяющих

поверхностей, или различные методы их отыскания (включая методы

проверки статистических гипотез). Вместе с тем стало ясно, что

основные трудности в задачах узнавания как раз связаны с выбором
исходного пространства, в котором было бы легко произвести

разделение.

Среди первых работ, посвященных моделированию процессов

узнавания, нужно выделить одну
— работу Бонгарда [5],

опубликованную в 1961 г. Первая ее особенность состоит в том, что

предложенный алгоритм в процессе обучения вырабатывал
разделяющее правило не в виде некоторой поверхности, а в виде набора
логических комбинаций. Другая особенность этой работы
заключается в том, что была поставлена задача распознавания не

изображений, а арифметических законов, точнее распознавания

таблиц, построенных по различным арифметическим законам. Это был

первый шаг на пути, который выводил проблему узнавания из

рамок узнавания зрительных образов. Еще один шаг на этом пути
был сделан, когда задача классификации геологических объектов
по комплексу геологических, геофизических и геохимических

данных была сформулирована как задача распознавания [6].
В последнее время программы распознавания стали широко

применяться для решения задач геологической, медицинской и

технической диагностики [7].
б. Возможности постановки некоторых

кинетических задач в качестве задач

распознавания

Примерами класса кинетических задач, которые можно решать

с помощью методов распознавания, являются следующие:

определение порядка реакции и оценка значений констант скоростей
химических реакций (в особенности их элементарных стадий) по

совокупности (комплексу) кривых зависимостей различных

параметров от времени, определяемых экспериментально. На основании

этого же комплекса данных (например, зависимости давления в

реакционном сосуде, состава газовой смеси и т. д. от времени)
можно пытаться решать задачи классификации реакций по типам,

выявление присутствия того или иного типа в механизме сложной,
многостадийной химической реакции и др.

Характерной особенностью этих задач в отличие от

большинства задач, которые решались методом распознавания до сих пор,

является явная зависимость всех исходных параметров от

времени. Рассмотрим, как это может отразиться на программе
распознавания. Можно исходную информацию записать следующим

образом: разбить временной интервал на конечное число s отрезков

и для каждого из них составить^тг-мерный вектор значений^всех
параметров и объединить их затем в один ns-мерный вектор,
который и будет объектом распознавания. Другая возможность со-

258



стоит в том, чтобы исходные кривые описывать не по точкам, а с

помощью набора обобщенных характеристик, например, число

максимумов на кривой и их амплитуда и т. п. От того, насколько

разумно будет выбран набор исходных параметров и насколько

удачно будут описаны характерные особенности этих кривых,
зависит успех решения задачи.

Кроме того, что программа распознавания позволит решить ту
или иную конкретную задачу классификации механизмов, оценок
констант и определения порядков элементарных стадий сложных

химических реакций, мы сможем также оценить информативность
отдельных параметров и их взаимосвязь. На основании этого

можно будет рекомендовать экспериментатору ограничиться

измерением достаточного набора параметров, а также указать
необходимую точность определения каждого из них.

Сам процесс подготовки данных для решения задачи с

помощью программы распознавания требует систематизации и

первоначального осмысления материала, при которых уже на этой

стадии выясняется целый ряд вопросов структуры
рассматриваемых кинетических процессов. Наконец, получив решение

некоторой задачи, мы вместе с тем получим и богатую информацию о

связях самого процесса с теми или иными из наблюдаемых его

характеристик. А это в свою очередь открывает возможность

построения моделей, удовлетворяющих вскрытым закономерностям. Опыт
подобных исследований в других областях (например, в геологии)
показывает, что этот метод позволяет найти ранее не отмечавшиеся

существенные особенности явлений. Очевидно, что в случае, когда
все стадии и реальные особенности кинетического процесса
описываются некоторой системой интегродифференциальных
уравнений, то естественно, что задача решается известными методами

(см. глава I и II) на ЭВМ, и в этом случае нет необходимости
использовать программу распознавания.

Совершенно отличная ситуация имеет место в том случае, когда

реальные процессы совершенно неудовлетворительно описываются

системой каких-либо уравнений (например, обтекание
гидродинамическим потоком с химическими реакциями поверхности
сложной формы и т. п.). В этом случае полезную информацию даст
как раз использование программ распознавания.

В промежуточном случае, а именно, когда некоторая часть

процесса удовлетворительно описывается соответствующими

уравнениями, результаты их решения могут быть использованы в

качестве входных параметров для программ распознавания наряду
с экспериментальными данными.

Насколько удачным окажется результат применения программ

распознавания к той или иной задаче, заранее сказать нельзя, но

не вызывает сомнений, что использование этого метода для

рассмотрения кинетических задач, безусловно, окажется полезным.

259



ЛИТЕРАТУРА

1. F.Rosenblatt. Trans. I.R.E. PGEC, 48, 425 (1960).
2. P. Д. Джозее. Предсказание характеристик персептрона. Киберне-

\ тический сборник, вып. 4. М., ИЛ, 1962.
3. А. Н. Сочивко. Распознающие устройства. М., «Радио», 1965.
4. Э. М. Браверман. Автоматика и телемеханика, 23, 349, (1962).
5. М. М. Бонгард. Биофизика, 6, 129 (1961).
6. Ш. А. Губерман. Использование обучающихся программ для решения

геологических задач. Труды Моск. ин-та хим. и газ. пром., вып. 62,

7. В. Л. Браиловский. Изв. АН СССР, Техническая кибернетика, № 2,
49 (1964).

4. ОБ ОДНОМ МЕТОДЕ ЧИСЛЕННОГО ИНТЕГРИРОВАНИЯ
УРАВНЕНИЯ БОЛЬЦМАНА С ПОМОЩЬЮ ЭВМ

а. Введение
Кинетическая теория газов, созданная еще Максвеллом, Больц-

маном и Гиббсом, долгое время развивалась сравнительно
медленно. Фундаментальные открытия, скажем, Больцмана были сделаны
задолго до попыток Ивона, Боголюбова, Кирквуда и других
подвести под них более солидную логическую базу. Работы Энскога
появились спустя четверть века после гильбертовых, и

понадобилось столько же времени, чтобы Грэд сформулировал свой метод
решения уравнений Больцмана. Объясняется это, по-видимому,
как трудностью предмета, так и в еще большей мере тем, что

данная область науки эволюционировала тогда почти исключительно

под влиянием собственных внутренних стимулов. Тот поток

различных публикаций, посвященных теории необратимых
процессов, который мы наблюдаем сейчас, возник лишь после того как

появился реальный объект изучения, часто требующий именно

микроскопического подхода, т. е. плазма.

Современная физика отличается от классической и в другом
отношении. Прежде интересовались преимущественно конечным
состоянием рассматриваемой системы, теперь — переходным
процессом. Теория равновесного состояния может быть с большим

правом названа законченным разделом науки. Кинетическая же

теория, несмотря на ряд блестящих исследований, до сих пор
нуждается в разработке ее логических оснований и в сколько-нибудь
регулярных и строгих методах решения отдельных задач. Здесь
мы коснемся только второго круга проблем. Сложность их состоит

в известном своеобразии уравнений теории.
Вся классическая статистика и кинетическая теория имеют

своим формальным основанием уравнение Лиувилля — линейное

дифференциальное уравнение с частными производными 1-го

порядка относительно функции 6N + 1 аргументов. Здесь N есть

число частиц в макроскопической системе, т. е. пропорционально
1015—1020. Задание дополнительных условий наталкивается в этом
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случае на принципиальные затруднения. Поэтому (а также и по

другим причинам) чаще всего ограничиваются менее точными

уравнениями относительно функций небольшого числа аргументов
—

кинетическими уравнениями. Простейшим из них является,

вероятно, больцмановское, о котором и пойдет речь дальше.
Кинетические уравнения обычно нелинейны; всякая попытка

строгого решения их представляется теперь делом почти

безнадежным. Неясны оказываются часто и возможности построения
приближенных решений. Все же из таких уравнений удается извлечь

весьма ценную информацию. Уметь делать это тем более

необходимо, что, как мы уже говорили, во многих случаях природа
явлений не допускает иного подхода. Примерами тому могут
служить исследования структуры фронта ударной волны или струи

газа, вытекающей либо в вакуум, либо в область, занятую
значительно более холодной средой. Тогда в газе одновременно
происходит установление равновесия по скоростям молекул, их

внутренним степеням свободы и, возможно, по каналам химических

реакций. Уравнения Больцмана принципиально позволяют описать

весь этот сложнейший процесс. Необходимо только уметь решать
их. Настоящее приложение посвящено одному частному аспекту
этой большой проблемы.

б. Объект исследования
В кинетической теории газа рассматривается система N

частиц массы тг (i = 1, ..., iV), занимающая некоторый конечный
макроскопический объем V. Предполагается, что любые две
частицы различимы и для каждой из них могут быть одновременно
заданы их радиусы-векторы гх,..., гN и импульсы рг, ..., Pn или

скорости 1)ц ..., Vn. Границы объема, в котором заключен газ,

представляются в виде геометрических поверхностей, так или

иначе отражающих частицы; следовательно, атомная структура
стенок не учитывается.

Наиболее полная статистическая информация о такой системе

содержится в ее iV-частичной функции распределения /дг = /лг(£,
гг, ...jVn, рг, ..., Pn), имеющей смысл плотности вероятности

обнаружения системы в момент времени t в элементарном объеме

фазового пространства около точки (гг, ..., Гдг, JPi, ..., Pn)* Функция
/as считающаяся обычно непрерывной и дифференцируемой (хоая
возможны обобщения), удовлетворяет уравнению Лиувилля:

\(JL+y*H±-?!L±\f -о (1)
\dt

г=г
dPi dri driW N

~

где Н = Н (г1? ..., vn, Рх, ..., Pn) — полный гамильтониан*.

* Метод Монте-Карло основан на тех же принципах, что и уравнение (1),
поскольку он предполагает получение сведений о траекториях всех N

частиц.
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Строгое решение его возможно только при очень специальном

выборе функции Н. Кроме того, в формулировку задачи Коши

для него должна войти функция /n (О, гх, ..., rN, рх, ..., pN), что

эквивалентно заданию в начальный момент времени 3N
координат и 3N импульсов частиц. Осмысленность этой процедуры
сомнительна.

К важным достоинствам уравнения (1) принадлежит то, что

оно непосредственно следует из законов движения классической
механики. В самом деле, его характеристическая система

совпадает с уравнениями Гамильтона. В отличие от других, уравнение
это не нуждается для своего обоснования ни в каких

дополнительных предположениях. Оно выражает тот факт, что фазовые
траектории замкнутой системы не пересекаются.

Чаще всего мы не располагаем возможностью найти функцию
/лг. Но даже если бы это оказалось достижимым, такая детализация

картины движения системы представляется совершенно излишней.

Действительно, теория призвана определить характерные
макроскопические величины, а их значения обусловлены состоянием

чрезвычайно больших групп частиц, а не отдельных молекул.

Для вычисления этих усредненных величин вводятся s-частичные

(l<^s<iV) функции распределения, связанные с iV-частичной

следующим образом:

/. = /. (*, гъ ...,гв,рь...,р8) = )fNdrs+1.. . drNdp9+1. . . dpN.

Здесь, как и везде далее, при отсутствии обозначения пределов
интеграл считается распространенным на всю область изменения

параметров интегрирования.

Такие функции задают вероятность нахождения в момент

времени t группыиз s частиц в состоянии (гг, ..., rs, p±, ..., ps)
независимо от состояния всех остальных N — s частиц. Оказывается,
практически достаточно знать одну-две первые функции /s,
поскольку через них могут быть выражены такие величины, как

средняя скорость молекул, их средняя энергия и др.

Рассмотрим поэтому одночастичную функцию распределения
/i= / (tj r, ij)*, вводимую таким образом, что величина / (t, r4

v) drdv представляет собой вероятное число молекул,
находящихся в момент времени t внутри элемента drdv объема одно-
частичного фазового пространства вблизи точки (г, v) его. В
большинстве случаев (но не всегда; см., например, [1]) / (i, r, v)
считается непрерывной и дифференцируемой. Для нее очевидно

следующее условие нормировки:

fdrdv = N.

* Переход от переменной р к v обусловлен исключительно соображениями
несколько большей наглядности.
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Свойства уравнения, которому удовлетворяет / (t, r, v),
существенным образом зависят от характера взаимодействия частиц,
а также от других факторов.

в. Уравнение Больцмана
Предположим, что силы взаимодействия между молекулами

быстро спадают с расстоянием, так что имеет смысл понятие

столкновения. Пусть, кроме того, среда сильно разрежена и большую
часть времени частицы движутся, почти не влияя друг на друга,
т. е. длительность процесса взаимодействия много меньше

времени между последовательными соударениями. Будем учитывать
влияние на функцию/ (£, г, v) взаимодействия не более чем двух

частиц одновременно (бинарных столкновений). Если пренебречь
влиянием внешнего поля на величину дифференциального
сечения рассеяния а и принять гипотезу «молекулярного хаоса»*,

то, следуя Больцману [2], мы получим уравнение относительно

/ (*, г, v)

Df^^v)^(^v^ + §^f(t^v) = Jf. (2)

Здесь X — внешнее поле, а // — так называемый интеграл
(соответственно / — оператор) столкновений

Jf = \K(f'f'—ff)d<udv. (2a)

Согласно принятым обозначениям, dco = sin ftdftdy; Ф —

полярный, а ф
— азимутальный углы рассеяния; / = / (t, r, v), f =

*

=/ (t, r, v) — функции распределения частиц до соударения; /' =

=f (t,r,v'),f=f(t,r, v')—функции распределения после него,

причем скорости v, v и v\ v* связаны соотношениями
* *

vf = w±(v, v, О, ф),

v' = w2(v, v, d, ф).
* *

Ядро К имеет вид

Форму // можно выяснить следующим образом. Допустим, что в

момент времени t некоторая молекула находится внутри элемента

объема drdv одночастичного фазового пространства вблизи его

точки (г, v). На эту молекулу падает поток частиц, имеющих

* Она состоит в том, что скорости и координаты частиц считаются

некоррелированными

h (*, ri, г2, vi, v2) = / (t, rlt vi) f (t, r2, v2).
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произвольные скорости v; его плотность Р равна
*

Р = \v — v\f(t, r, v)dv.
* * *

Число столкновений, которое за время bt испытывают частицы,

до встречи имеющие скорости v, v, а после нее — v\ v' и

находящиеся в элементе объема dr конфигурационного пространства,

равно

Pa sin ftdftdydt = \v — v | / (t, r, v) в sin MMqdvbt.
* *

Быстрота уменьшения R~ числа частиц, имеющих скорости
близкие к v, в данном элементе объема равна произведению количества

их (/ (£, г, v)) на общее число столкновений таких молекул с

любыми другими:

ВТ = / (*, г, v) \ | v — v | б/ (t, r, v) sin bdftdydv. (3)

Подобным же образом определим быстроту увеличения функции
/ (£, г, v), происходящего под влиянием соударений молекул,
обладавших до встречи скоростями v',v\ а после нее v, v (v фикси-

рована)

R+ = \ | v _ v I в/ (t, r, v') f(t,r, vf) sin ftdftpyiv. (4)

При выводе последнего равенства использованы соотношения,

выполняющиеся только в случае упругих столкновений:

dvdv = dv'dv'.
* *

Поэтому
R+ R ^\ \i{Hf (*, r, )( )

' *

(5)
* *

Ввиду особой важности проблемы получения кинетических

уравнений разработано множество способов вывода их из

уравнения Лиувилля (например, [3]), или еще более общего [4], или

же из так называемого М-уравнения [5]. Построен специальный
диаграммный метод, позволяющий установить их вид для
широкого класса частиц и условий движения [6].

Как известно, уравнение Больцмана справедливо, если

оправдывается гипотеза «молекулярного хаоса». В работе [7] было
показано, что при переходе к iV/F-пределу, т. е. для

асимптотически большой системы, у которой N ->- оо, V->- оо, N/V = const,
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равенство

/г(*, ги г2, г^ь v2)^f(t, r^vjfit, r2, v2)

выполняется в любые моменты времени t ^> 0, если оно

выполнялось при t = 0. В конечной системе молекулярный хаос может

иметь место в одни моменты времени и отсутствовать в другие,

так что уравнение (2) справедливо статистически [8]. Имеет смысл

напомнить, что возможность перехода к iV/F-пределу совсем не

очевидна, поскольку не известно еще, хорошо ли свойства конечной
системы аппроксимируются свойствами бесконечной [9].

До сих пор рассмотрению подвергался газ из бесструктурных
частиц, не обменивающийся с внешней средой ни энергией, ни

массой. Между тем, с помощью системы уравнений вида

можно описать поведение смеси различных газов [10], в том числе

таких, молекулы которых обладают внутренними степенями

свободы, и, следовательно, построить теорию многоатомных газов

[11]. Добавление к правым частям уравнения (6) членов,

задающих изменение функций ft (t, r, vt) под влиянием внешних

возмущений, позволяет включить в данную схему открытые
системы. Известен вид //ив тех случаях, когда необходимо
учитывать не только двойные, но и тройные столкновения (например, при
высоких плотностях [12, 13]).

Наконец, существует релятивистское и квантовое обобщения
уравнений Больцмана [14]. Уравнения, подобные системе (6),
применяются при рассмотрении газовых смесей, в которых

происходят химические реакции [15].

г. Общий анализ больцмановского
уравнения

Конкретный вид ядра К оператора столкновений зависит от

предположений о характере сил молекулярного взаимодействия.

Для частиц, аппроксимированных упругими невращающимися

шарами диаметра Z,

(7)

где V = v — V, к — орт, направленный вдоль линии центров ча-
*

стиц в момент удара.
Столкновения молекул, между которыми действуют силы

отталкивания, убывающие с расстоянием г как xrs, описываются
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интегралом

Jf = ps-^f J , у p (,,,, _^ prfprf^. (8)

Здесь величина р
— специальным образом определенное

нормированное прицельное расстояние. Очевидно, для s = 5 («максвел-
ловы молекулы») интеграл (8) сильно упрощается. Теоретически
наиболее полно исследовано уравнение для «псевдомаксвелловских

молекул», когда, по определению, уравнение Больцмана имеет

вид

причем

А — 4 (—\
2

\ prfptfrc — const,
\т) у

r T

т. е. интегрирование по р распространяется на конечный
интервал (0, ртах)- Следует иметь в виду, что сила отталкивания F~r~6
Довольно плохо описывает реальное взаимодействие молекул,
^ взаимодействие «псевдомаксвелловских частиц» вообще нельзя

описать никаким потенциалом. Если же s^> 5, то при \v — v | ->- оо

•к

яДро ЛГ неограниченно растет, поэтому в iV/F-пределе уравнение
(2) — сингулярное. Кроме того, оно всегда нелинейно, поскольку
R Jf входят произведения неизвестных функций.

В настоящее время нет никаких методов строгого решения
Уравнений такой сложной природы. Неудивительно поэтому, что

известно лишь одно точное решение больцмановского уравнения —

Функция Максвелла. Тем не менее в ряде случаев мы знаем, что его

решение существует. Карлеман [16] показал, что уравнение

(Ю)

имеет при t ^> 0 единственное непрерывное неотрицательное

решение, обращающееся при ^ = 0 в заданную функцию,
подчиненную определенным ограничениям. Подобные теоремы
относительно уравнения для газа псевдомаксвелловских частиц
доказаны в работах Уайлда [17] и Моргенштерна [18], [19].
Неоднородный газ псевдомаксвелловских молекул изучен Трэдом [20];
°н получил единственность решения «в малом»* задачи Коши.
Единственность решения такой задачи показал Повзнер [21],
исследовавший систему нелокально взаимодействующих частиц,
и Филиппов и Ильинская, рассмотревшие уравнение обтекания
газом выпуклого тела при довольно общих граничных условиях
1^]

*
Для моментов времени достаточно близких к начальному.
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д, Способы р е 1тт о и и я. М о j\ и (J i к s пни

уравнения

Первые попытки построения приближенных решений (2)
принадлежат Гильберту (см., например, [23]), методы которого
были затем усовершенствованы Энскогом и Чепменом [24], а в

последнее время Струминским [25, 26]. Метод Энскога — Чепмена

позволяет, если принять известные ограничения, построить

интересующее нас решение в виде функционального ряда; каждый
член его может быть найден из решения соответствующей системы

уравнений. К сожалению, ряд Энскога сходится
асимптотически *. Поэтому точность приближения не только не растет, но

даже убывает с увеличением количества используемых членов.

Хорошо известно также, что этот способ решения применим лишь

для начальных состояний, близких к термодинамически

равновесному, хотя часто он привлекается при решении таких задач,

в которых это условие заведомо не выполнено (например,в работе
[27] для исследования химически реагирующей смеси газов).
Позже Грэд [28] предложил свой способ решения уравнения (2),
основанный на разложении искомой функции / (t, r, v) в ряд по

обобщенным полиномам Эрмита
°°

bin)
t jq *S^} ijk... Tji7})

где

-

ехю (с* I 2\ дехр(с/2) _

- ехр (в I zj
дС{дс.дс^

,
с -

дС{дс.дс^
,

с -

[m J

а и', р', Т' — параметры, определяемые через характеристики
состояния газа.

Вычисляемое таким образом первое приближение аналогично

чепменовскому. Получение же более высоких приближений
связано со все возрастающими трудностями, так что сейчас известны

лишь несколько первых. Дело в том, что число уравнений в системе,

которую надо решить, чтобы найти очередной член ряда, быстро
растет с его номером.

Трудность анализа и решения уравнения Больцмана
побуждает искать способы упрощения его. Наиболее корректной из

попыток такого рода представляется замена интегро-дифферен-
циального уравнения (2) чисто интегральным (см., например, [29]),

* Именно, при Кп -> 0.
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что и было предпринято в работах [17—22]. При отсутствии
внешнего ноля уравнению может быть придан следующий вид:

/(*, г, v) =
t

— v(t — t0), г>]ехр {—1

t

ехр {— §v[s,r — v(t — s),v]ds\
1

и
}

Dh

{—\v Is, r— v(t— s), v]ds\ N[x, r — v(t — t), v] dx,

(12)
причем

v = \ Kfdadv; N = \ Kf'f'dadv.
v

# *
*

* *

В работе [30] уравнение такого типа получено независимо от

больцмановского.
Когда по тем или иным соображениям известно, что функция

распределения в любой момент времени мало отличается от макс-

велловской /00, полагают (см., например, [24])
/ = /оо (1 + A)f

где h — новая неизвестная функция.
Пренебрегая квадратичным членом, для h получаем из (2)

уравнение

= \/°°К (h' + h'—h — h) dadv. (13)
*

* * * ^

Линейность уравнения (13) существенно облегчает поиски его

решения. Например, его можно разложить в ряд по собственным

функциям линеаризованного оператора столкновений, который
относится к фредгольмовскому типу. Существуют и другие способы

линеаризации ([31—33]); исследование таких уравнений
содержится в работах [34, 35].

Бхатнагар, Гросс и Крук [36] предложили модель уравнения

(2), получившую название релаксационной

Df = v (/о - /), (14)

где /° — локальная максвелловская функция, a v — частота

соударений молекул. Решение уравнения (14) обладает многими

свойствами решения (2).
Вероятно, наименьшее число препятствий возникает при

анализе кинетического уравнения для газа Кнудсена (Кп-^оо),
когда столкновениями можно просто пренебречь

Df = 0. (15)

Теория уравнений такого рода разработана сравнительно полно.
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Уравнение Больцмана позволяет получить множество

сведений (например, значения ряда кинетических коэффициентов),
несмотря на то что его решение почти всегда остается неизвестным.

Чрезвычайно важна возможность вывода с его помощью уравнений
гидродинамики ([15, 37,38]). При этом автоматически учитываются

все процессы, играющие существенную роль в данном круге
явлений, а феноменологические константы связываются с

микроскопическими характеристиками. Но уравнение (2) позволяет

решать, хотя бы приближенно, и такие задачи, к которым другие
известные методы просто неприменимы. Скажем, серьезный
прогресс в понимании структуры фронта ударной волны * был

достигнут после того, как к этой проблеме оказалось возможным

применить аппарат кинетической теории [39]. Не менее значительную

роль уравнение Больцмана (линеаризованное) сыграло в

исследованиях распространения электромагнитных волн [40], обтекания
тел сильно разреженным газом, ультразвуковых колебаний [41,
42] и т. д.

е. Об одном методе решения уравнений
Больцмана**

Исследуем более подробно асимптотически большую замкнутую

систему одинаковых частиц массы т, не подверженную действию
внешнего поля. Уравнение Больцмана для нее имеет вид

(16)

Будем решать задачу Коши, т. е. зададим начальное условие

= /0(r, v). (16а)

Оператор / определен на функциях, достаточно быстро
убывающих при | v | -»■ оо. Поэтому пусть

/(*, г, v)==<p(v)F(t, r, v),
r,v)1 (17)

причем ф (v) > 0 — некоторая функция, стремящаяся к нулю

при | v | ->- оо . Для новой неизвестной F (t, r, v) получаем
уравнение

pi- F'F' — yFF) dudv (18)

* Его толщина одного порядка с длиной свободного пробега частиц, почему
использование методов гидродинамики, вообще говоря, некорректно.

•■* Идея и реализация приводимых ниже доказательств принадлежит А. Н.

Темчину. За полезное обсуждение возникавших при этом вопросов
приносим глубокую благодарность Л. Р. Волевичу, А. Л. Крылову и А. Я. Тем-

кину.
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с начальным условием

F(0,r,v) = Fo(r,v). (18а)

Выберем ф (v) так, что

Ф'Ф' = ФФ. (19)
• *

Тогда

JF = \* (F'F' — FF) dadv, (20)** � * *

где Ж = К ф, причем для всех сколько-нибудь реальных моле-

кулярных полей ядро & интегрируемо. Допустим сначала, что

сила поля F ~ xr~s, s <^ 5, F = 0 при г j> г0. Отсюда следует

«dcodt; < к = const < оо. (21)

Уравнение (18) с условием (18а) можно свести к интегральному

F = J [J Ж {F'F' — FF) dwlv]^ ds + [F0]t. (22)
о

* * *

Оператор [ ]т в данном случае таков, что для любой функции
g (t, г, v)

[g{t,r,v)]x=g(t~%, r — vx, v).

Следующие свойства [ ]т легко выводятся из его определения.
1. Оператор [ ]т линеен.

2. Из непрерывности g (t, r, v) следует непрерывность
lg(t,r, v)U.

3. Если g (t, r, u)> h (t, r, v), то и [g]7 > [h]r.
4. |[g]T| = [|g|JT.
Пусть С есть пространство ограниченных непрерывных

функций переменных t, r и и, изменяющихся в пределах

1<оо, |г|<оо, |^|<оо,
а метрика в нем задана обычным соотношением

р(ж, у) = \ у\
t, Г, V

Оператор А, вводимый как

Ах = \ [$ * (х'х' — хх) d(udv\t-t ds+ G = Агх + G,
о

* * *

где G == [Folu х €Е С, действует в пространстве С, если G G 6\
а Ж ограничено и подчинено условию (21). Действительно, для
любого х е С функция Ж (#V — хх) ограничена; в соответствии
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со свойствами операторов [ Ь и интегрирования функция

\\ $ (х'х' — хх) dwdvlts

также ограничена и непрерывна.

Поэтому АХС а С и, следовательно, AC cz С.

Выясним, яри каких ограничениях А есть оператор сжатия,

для чего в качестве области определения его возьмем замкнутый
шар S (§, й) с С и оценим величину

р(Ахч Ау) = , Агу) =
t

= max \ \ Я (х'х' — хх) da>dv ds —

t

— \\\& (y'y' — yy) dadv] ds ,

j1 LJ
* * *Jis

где x, y^S (#, R).
Имея в виду свойства операторов интегрирования и [ ]т,

получим
г

р(Ах, Ay) < max 'х' у'у' \х х —у у | + |хх
—

;
* * *

t

max 'ж' — 2/У | + I жж — уу\) max \ \ ftdadv ds =

= 1\к max (| х'х' — у'у' \ -

t, Г, V * *

Произведем преобразование

(23)

fx'y'\ I ix у
Det

V»?.

Deti
(х' — у у' — х

Detl
(х
— у у —

* *

х

Следовательно,

р(Ах, Ay)^Lp(x, у),

(24)

(25)

где L = 4 7\й:Д.
При любом Л и достаточно малом 7\ <С(4А:Д)~х константа

Липшица L << 1 и А — оператор сжатия. Он преобразует шар S (Ф, i?)
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в себя, если

|| Ах\\ = |
что дает условие

||G|K(1-L)#. (26)
Поскольку R произвольно, тем самым доказана следующая

теорема: уравнение (22) с непрерывным ограниченным ядром Ж, для

которого выполнено условие (21), на интервале времени (0, Тг)
при любой Fo e= С имеет решение, единственное в шаре

S(&, R)czC. Ономожет быть получено как предел последовательности
{хп = Ахп_1} от любого х0 ЕЕ S (Ф, i?)*. Действительно, в

условиях теоремы замкнутое подмножество банахова пространства С

преобразуется в себя оператором А, являющимся на нем

оператором сжатия. Существование и единственность решения следуют
тогда из принципа сжатых отображений.

Утверждения эти могут быть с некоторыми изменениями

распространены на систему -

Л = S )№ (/; /}
-Ш d(odVj]lsds + Gu (27)

i=i о *

(* = 1,..,л)

которой мы заменим уравнения Больцмана

^ Щ ф (28)

с начальными условиями

г^г) = /ог(г,гг). (28а)

Решение уравнения (22), дифференцируемое по t, r и v,

представляет собой классическое, а недифференцируемое —

обобщенное решение уравнения (18) с условием (18а).
Совершенно аналогичная теорема может быть доказана для

интегрального уравнения в форме (12) с положительным

оператором; получаемое решение тогда неотрицательно.

Поскольку неравенство L <С 1 может выполняться при
любом R, значение функции f(Tly r, v) в момент Тх можно

рассматривать как новое начальное условие и построить решение на

интервале (Тг, Т2), затем (Г2, Г3) и т. д., если быть уверенным, что

ни при каком t решение не растет неограниченно. Последнее пред-

* Необходимость^теорем такого рода'стала вполне очевидной после того, как

Леви [43] построил уравнение, не имеющее решений даже в

пространстве обобщенных функций.
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ставляется правдоподобным в тех случаях, когда начальное

состояние выбрано не слишком специальным образом. В самом деле,

уравнение Больцмана описывает процессы, в которых энтропия

системы возрастает. Неограниченный же рост / (t, r, v) означал

бы своего рода фокусировку частиц, что в отсутствие границ
и внешних полей кажется весьма мало вероятным.

Отметим, наконец, что распространение изложенных

результатов на случай К ->■ оо при | v — v | ->■ оо не встречает особых
*

затруднений, хотя и связано с несколько более громоздкими
выкладками.

Представим ядро К оператора столкновений как

К = o\v— v |.
*

Если пренебречь рассеянием на малые углы, то а < оо. Введем
три числовых параметра а, %, %i ^> 0, где % ^> %г, причем
размерность %, /I пусть будет [fl, a [al = lv]~2 [t]~K Для времен
* ЕЕ (0, %}) решение задачи (16—16а) целесообразно искать в виде

/(*, г, v) = F(t, г, г>)ехр{-а(% — *)М2}>

/о (г, v) = Fo (r, v) ехр {— ах | v |2}. (29)

Тогда для функции F получим уравнение

= [к ехр {— а (х — t) | v |2} (F'F' — FF) dadv (30)
и начальное условие

Ъ (0, г, v) = Fo (r, v) = FQ. (30а)

Такой задаче соответствует интегральное уравнение
t

F = $ехр{—a|v|2(^ — t)}[J ЯГехр{— a(x — f)|v|2} X

о

VXJX+ (FoLexp{-a|t>|2*}. (31)

Оказывается, что входящий в него оператор действует в

пространстве С, а будучи определен на замкнутом шаре S (Ф, Ro) радиуса

7?Л <г" - (32)0 ^4||L(x)|| ' ^ '

где
t

L (х) = ^ ехр {— а | v |2 (t — т)} [^ К ехр {— а (х — t) \ v \2}d(odv\ t_xdx
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представляет собой оператор сжатия. Он преобразует шар
S (д, До) в S (fl, i?0), если

(33)

Для функции L (%) получена оценка

*

В последнем выражении Jx и /2 — определенные константы,

зависящие от параметров а, % и %i«

ж. О возможности расчета решения с

помощью ЭВМ

Доказанные теоремы позволяют, по крайней мере
принципиально, вычислить приближенное решение уравнения (16) при
посредстве удобной циклической программы. Быстрота сходимости

итераций при этом существенно определяется выбором нулевого

приближения, о чем можно сказать следующее. Как известно, если

{хп} есть последовательность вида {хп^ = Ахп}, сходящаяся
к точному решению х уравнения х = Ах, a L — константа

Липшица оператора А, то

Ln

р (ж, хп) < YZTZ Р (*<>> ^l). (35)

Допустим, что нам необходимо знать решение х с точностью,

характеризуемой положительным числом Р

Р (я, *«) < Р-

Потребуем, чтобы выполнялось неравенство

Г=гР(*«ь А*о)<Р- (36)

Оно означает, что при данных Р и L число итераций п тем менее,

чем меньше величина р (х0, Ах0). Зададим функционал р на

некотором (например, m-параметрическом) семействе функций М а

c5(d, i?0). Наилучшее вМ нулевое приближение определится из

вариационной задачи

р (х0, Ах0) = min (37)

#0 Gil/.

Но с практической точки зрения проще подобрать разумное
значение константы L, от величины которой также зависит число

итераций, необходимых для достижения данной точности.
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з. О применении уравнений Больцмана
к изучению химических реакций

Любой процесс взаимодействия частиц, в том числе и такой,
при котором изменяется их природа, может быть охарактеризован
своим дифференциальным сечением. Это позволяет естественным

образом включить подобные процессы в схему больцмановского
формализма. По-видимому, сейчас и не существует другого
способа рассмотрения (на молекулярном уровне) задач, касающихся

неравновесной пространственно неоднородной смеси газов, в

которой происходят химические реакции.

Интегралы реакций* /£, при которых в результате соударения

двух частиц образуются две новые

а+ р -v + б,

известны (см., например, [15])
п

'

4 = S (J Ktif'if'jdvdVi - \ K-hfidadVj). (38)

Здесь ядра Кц и Кц различны, поскольку неодинаковы сечения

процессов, приводящих к увеличению и, соответственно,
уменьшению числа частиц вида i, а также потому, что кинетическая

энергия частиц не сохраняется и dvtdVj =f= dv[dVy
Часто приходится изучать и процессы, в которых участвуют

три частицы, например:

Тогда, несмотря на разреженность среды, следует принять во

внимание тройные столкновения. Если допустить аппроксимацию

то интегралы некоторых реакций можно, по-видимому, записать

[44] как

2 (J KylfthdQdVjdVb- J KTjkfifsftdQdvjdv^ . (39)

Специальные методы вычисления решений в подобных случаях

еще не разработаны.

и. Пример применения метода: расчет
релаксационной задачи

Доказанная выше теорема и найденные выражения (25), (26)
позволяют построить достаточно быстро сходящуюся
последовательность приближений и разработать алгоритм и программу

* Интегралы столкновений, приводящих к реакциям.
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(требующую разумной затраты машинного времени) численного

решения релаксационных задач при помощи ЭВМ.
Нами рассмотрена задача максвеллизации аргона. Принято,

что половина частиц газа имеет в начальный момент температуру

Г1 = 300°К, а другая - Г2 = 1200° К; п± = щ = 1018 см3.

Для ускорения счета потенциал молекулярного поля был выбран
пропорциональным г~4. Такое ограничение не является

существенным; вообще говоря, могут быть использованы и другие
модельные потенциалы. При расчете рассеяние на углы,
меньшие 1°, не принималось во внимание. Интегралы, входящие
в уравнение (22), рассчитывались методом Монте-Карло. Выбор
шага интегрирования по времени определялся соотношением (25).
Число итераций менялось от семи на первых шагах до двух на

последних. Интерполяция всех функций была линейной, хотя

без существенного изменения точности счета можно использовать

и другие виды интерполяции.

Программа была составлена таким образом, что в результате
расчета получались распределения частиц по скоростям на

каждый заданный момент времени. Структура программы такова, что

она может быть, при небольших изменениях, применена для
решения других релаксационных задач. Подобной программой
охватывается и случай дискретных распределений, когда необходимо
решать систему уравнений Больцмана.

Вычисления выполнены на машине БЭСМ-3; время счета

около 60 час. Полученные результаты дают картину эволюции
начального распределения и позволяют определить время

максвеллизации (~ 10~8 сек) и число необходимых для нее

столкновений (~ 2—3), а также конечную температуру (~ 700° К). Это

находится в удовлетворительном согласии с результатами,
полученными другими методами*[45—47].

Таким образом, показано, что предложенным методом можно

осуществить численное решение кинетического уравнения

Больцмана по крайней мере для задач релаксационного типа. Мы

полагаем, что этот же метод применим и в случае более

сложных задач, в частности, задач описания эволюции

пространственно-неоднородных систем.
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